NOTES ON (SSP) SETS
SATOSHI KOIKE AND LAURENTIU PAUNESCU

ABSTRACT. In [8] we investigate the directional behaviour of bi-Lipschitz home-
omorphisms A : (R™,0) — (R",0) for which there exist the limits lim,, o nh(%),
denoted by h(z). The existence of such h(x) makes trivial to see that h(D(A)) =
D(h(A)) for arbitrary set-germs A at 0 € R™.

Recently, J. Edson Sampaio made the remarkable observation ([9]) that we al-
ways can assume the existence of a subsequence n; € N, such that lim,, nlh(nl) =
dh(z) (in his notation) and this dh, although not so strong as h, behaves as well
directional-wise for subanalytic sets. He uses this fact to show that bi-Lipschitz
homeomorphic subanalytic sets have bi-Lipschitz homeomorphic tangent cones.

The purpose of this note is to show that Sampaio’s dh works as well for (SSP)
sets, that is, the above result is characteristic for (SSP) sets, a much wider class. In
particular we show that the transversality between (SSP) sets is preserved under
bi-Lipschitz homeomorphisms (see 2.17).

1. INTRODUCTION.

In [5] we proved that the dimension of the common direction set of two subanalytic
subsets is a bi-Lipschitz invariant. In proving that, we introduced and essentially
used the notion of sequence selection property, denoted by (SSP) for short. Sub-
sequently we have published three more papers [6], [7] and [8], where we proved
essential directional properties of sets satisfying (SSP) with respect to bi-Lipschitz
homeomorphisms. For instance we proved two types of (SSP) structure preserving
theorems, and we introduced the notion of directional homeomorphism, proving a
unified (SSP) structure preserving theorem with directional homeomorphisms.

In this note, using Sampoio’s idea, we generalise his main result in [9] and the
aforementioned main result in [5] to the case of the (SSP) setting. Although the
proofs are in the spirit of [8] , basically the same as in [9] (at times even simpler),
due to the wide potential applications, we believe that it is still worth mentioning
this generalisation.

We describe both the notions and notations necessary for this topic and our results
in the (SSP) setting in the next section.
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2. DIRECTIONAL PROPERTIES OF SETS

In this section we recall the notions of direction set and sequence selection prop-
erty, and also several elementary properties concerning (SSP).

2.1. Direction set. Let us recall the notion of direction set.

Definition 2.1. Let A be a set-germ at 0 € R™ such that 0 € A. We define the
direction set D(A) of A at 0 € R" by

D(A) :={a€ 5" | Ha} C A\ {0}, z; = 0 € R" s.t.

Z;

4]

—a, i — 00}.

Here S™~! denotes the unit sphere centred at 0 € R™.

For a subset A C S"™!, we denote by L(A) a half-cone of A with the origin 0 € R"
as the vertex:
L(A):={taeR" |a€ A, t>0}.
For a set-germ A at 0 € R" such that 0 € A, we put LD(A) := L(D(A)), and call
it the real tangent cone of A at 0 € R™.

2.2. Sequence selection property. Let us recall the notion of condition (SSP).

Definition 2.2. Let A be a set-germ at 0 € R™ such that 0 € A. We say that
A satisfies condition (SSP), if for any sequence of points {a,,} of R" tending to
0 € R", such that limp, o o2y € D(A), there is a sequence of points {b,,} C A
such that,

lm = || < llamll, o],

am—b
lam=bmll _ o
llamll

ie. lim,, .

Below we give several general examples of sets satisfying condition (SSP), to illus-
trate the richness of this class. Consult [7] for more concrete and general examples.

Example 2.3. (1) Let a,, := = € R, m € N, and set 4 := {a,,} CR. Then 0 € A
and A satisfies condition (SSP).

Let A C R" be a set-germ at 0 € R™ such that 0 € A, then the following hold:

(2) The cone LD(A) satisfies condition (SSP),

(3) If A is subanalytic or definable in some o-minimal structure, then it satisfies
condition (SSP). See [4] for the definition of subanalytic, and see [2, 3] for the
definitions of definable and o-minimal.

(4) If Ais a finite union of sets, all of which satisfy condition (SSP), then A satisfies
condition (SSP).

(5) If A is a C' manifold such that 0 € A, then it satisfies condition (SSP) and
LD(A) = To(A) i.e. the tangent space of A at 0 € R™ (this is not necessarily
true for C° manifolds or if 0 ¢ A).

(6) Let 7 : M,, — R" be the blowing-up at 0 € R™. It is not difficult to produce an
example B which satisfies condition (SSP) and w(B) = A does not necessarily
satisfy (SSP). For instance we can take B = CUE, E = 7—1(0), CNE = {a}, such
that C' does not satisfy (SSP) and LD(C) C LD(FE) at a. Then 7n(B) = n(C)
does not satisfy (SSP), whereas B does satisfy (SSP).



BILIPSCHITZ HOMEOMORPHISM 3

(7) Let us denote by ¢ the positive z-axis, and by m the half line defined by y = cz,
x > 0, for some ¢ > 0. There are many types of zigzag curves B having infinitely
many oscillations around 0 € R? between ¢ and m. Some of them do not satisfy
condition (SSP) e.g. Example 3.4 in [5], where the union of B and ¢ consists of
similar triangles. See the example below 2.11 for more on condition (SSP) and
zigzags.

Let 7 : My — R? be the blowing-up at 0 € R%. Using a local coordinate of
My, 7 is expressed by m(X,Y) = (XY,Y). Let B be as above, with or without
(SSP). Then we can see that A := 7(B) is in the region |x| < c|y|*, x > 0,y > 0.
Therefore LD(A) is the positive y-axis. So regardless whether B has (SSP) or
not, one can see that its image A = 7(B) satisfies condition (SSP). Compare to
(6).

(8) Let 0 € AN B and assume that LD(A) N LD(B) = {0}. Then AU B has (SSP)
if and only if both A and B have (SSP).

(9) A polynomially bounded strictly decreasing sequence A = {a,, € Rla,, > ani1,a, —
0,n — oo} has (SSP). Note that there are examples of sequences, for instance
A={a, =nV" € Rlap, > ans1,a, — 0,n — oo} which are not polynomially
bounded but they are (SSP).

Sketch:

We put a, = n=" and we may assume that for all n > 2 we have k —
1 < a(n) < k, for some integer k for which we have n'=* > a, > n=*. By
construction we have (1 — #1)_0‘(”) > (n + 1)eM=ett) and (1 + 1)et+) >
neM=e(+) which in turn imply that n*™=eC+) 1 5 — oo and this is
equivalent to 22— — 11ie. A has (SSP).

an

We have the following criterion for condition (SSP).

Proposition 2.4. A satisfies condition (SSP) if and only if dist(ta, A) = 0(t), for
any direction a € DA.

Remark 2.5. We can always construct a global Lipschitz extension of a given Lip-
schitz mapping f : A — R" A C (X,d) to f: X — R Indeed, for a Lipschitz
function with constant L, f: A — R, A C X, A endowed with the induced metric
from (X, d), we have an extension formula (see H. Whitney [10] or S. Banach [1]):

ax) = inf (f(a) + Ld(z, a)).

acA
Similarly one can extend it by
8(z) i= sup(f(a) = Ld(a.a)).
ac
This construction can be used to extend Lipschitz maps as well, however, without
preserving the Lipschitz constant.

Remark 2.6. For a given Lipschitz mapping f : R" — R" we can associate the
bi-Lipschitz mappings Y, (f) : R x R" — R" x R" defined by Y, (f)(z,y) =
(z,y+ f(z)) and Y_(f) : R" x R® — R" x R" defined by Y_(f)(z,y) := (z+ f(y),v).



4 SATOSHI KOIKE AND LAURENTIU PAUNESCU

Given a bi-Lipschitz mapping ¢ : A — B, A, B C R", we can extend both ¢
and ¢! to R", say to global Lipschitz mappings ¢ and ¢!, and then consider the
corresponding bi-Lipschitz mappings Y, ,Y_. .

We then consider the globally defined bi-Lipschitz ¢ =Y (67" ' oY,(¢) and
note that ¢(z,0) = (0, ¢(x)),Vz € A.

In other words, in considering the direction cones of A and B we may assume
that ¢ : A — B, A, B C R", is defined globally, see [9]. This is a standard way of
creating bi-Lipschitz mappings, we call it the doubling process.

Remark 2.7. Given a bi-Lipschitz homeomorphism 1 : R" — R”, one can consider
¥n(x) = ny(%) and observe that in a compact neighbourhood of the origin we can,
via Arzela-Ascoli’s theorem, claim the existence of a limit 1,,, — di (see [9]). This
will be bi-Lipschitz as well with the same constants.

We have the following lemma in the (SSP) setting.

Lemma 2.8. Let A, B C R” set-germs at 0 € R" such that 0 € AN B, and let
¢ A — B be a bi-Lipschitz homeomorphism. If A satisfies condition (SSP), then

d¢(LD(A)) ¢ LD(B).

Proof. By remark 2.6 we may assume that ¢ is global and by remark 2.7 we can
consider the associated d¢ = lim; ., ¢,,. Take an arbitrary v € LD(A). Since A
satisfies condition (SSP), there is a sequence of points v; € A, i € N, such that

v 1
[vi = — | << — = [luill.
7 (2

Accordingly we have

o) — ()] << -

7 K3

which in turn shows that
s (v;) — nigb(%)ﬂ 50 as i — oo.
It follows that d¢(v) € LD(B) as claimed (see [9]). O

Remark 2.9. In fact one can prove the following. Let A, B C R" be set-germs at
0 € R™ such that 0 € AN B, and let ¢ : (R", A,0) — (R", B,0) be a Lipschitz
mapping-germ. If A satisfies condition (SSP), then dp(LD(A)) C LD(B). Here d¢
is merely Lipschitz.

As a corollary of the above lemma, we have the generalised result of Theorem 3.2
in [9] to the case in the (SSP) setting.

Theorem 2.10. Let A, B C R" be set-germs at 0 € R™ such that 0 € ANDB, and let
¢ A — B be a bi-Lipschitz homeomorphism. If both A, B satisfy condition (SSP),

then do(LD(A)) = LD(B).
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Example 2.11. Let f : (R,0) — (R,0) be a continuous zigzag function like in
Figure 1, whose graph has infinitely many oscillations around 0 € R? between the
positive z-axis ¢ and the half line m defined by y = cx, x > 0, for some ¢ > 0.

Now we define the mapping ¢ : (R? 0) — (R?,0) by

¢(x,y) = Y (f) = (2,9 + [(2)).

Then ¢ is a homeomorphism. Let us remark that ¢ satisfies condition (SSP),
LD(¢) = ¢ and LD(¢(¢)) is the sector surrounded by ¢ and m with 0 € R? as
the vertex. Therefore, by Theorem 2.10, we can see the following property:

If the zigzag ¢({) satisfies condition (SSP), then ¢ cannot be bi-Lipschitz (i.e. f
cannot be Lipschitz). In other words, if ¢ is a bi-Lipschitz homeomorphism (f is
Lipschitz), then the zigzag ¢(£) does not satisfy condition (SSP).

The above property follows also from some directional property of intersection
set (Proposition 2.29 and Appendix in [7]) or an important property concerning

LD(h(A)) = LD(h(LD(A))) in [5].
Using Theorem 2.10 , we can show the following corollaries.

Corollary 2.12. Let A be a set germ at 0 € R™ such that 0 € A\ {0}, and let
0 € R™ have a neighbourhood in A bi-Lipschitz homeomorphic to an open set in
some Euclidean space R*. Then LD(A) is bi-Lipschitz homeomorphic to RE.

Proof. Assume that A is bi-Lipschitz homeomorphic to an open set U C R*. Then
according to example 2.3 (5), U satisfies condition (SSP) and LD(U) = R*. There-
fore by Theorem 2.10, their tangent cones are bi-Lipschitz homeomorphic as well. [

Corollary 2.13. Let A be a set germ at 0 € R™ such that 0 € A\ {0}, and let
0 € R™ have a neighbourhood V' in A bi-Lipschitz homeomorphic to a cone LD(C').

Then'V and LD(A) are bi-Lipschitz homeomorphic as well, in particular dimD(A) =
dimA — 1.

Proof. Any cone has (SSP) and LD(LD(C)) = LD(C). Therefore by Theorem 2.10,
their tangent cones are bi-Lipschitz homeomorphic as well. O

We can show also the following lemma in the (SSP) setting.
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Lemma 2.14. Let A, B C R" be set-germs at 0 € R™ such that 0 € AN B, and
let h : R™ — R™ be a bi-Lipschitz homeomorphism. If both A, B satisfy condition
(SSP), then

dim(D(h(A)) N D(h(B))) > dim(D(A) N D(B)).

Proof. Having established Lemma 2.8, the proof follows as in [9]. O

As a consequence of the above lemma, we have the generalised result of Main
Theorem in [5] to the case in the (SSP) setting.

Theorem 2.15. Let A, B C R" be set-germs at 0 € R"™ such that 0 € AN B,
and let h : (R™,0) — (R™0) be a bi-Lipschitz homeomorphism. Suppose that
A, B, h(A), h(B) satisfy condition (SSP). Then we have the equality of dimen-
5t0Ms,

dim(D(h(A)) N D(h(B))) = dim(D(A) N D(B)).

Definition 2.16. Let A, B C R” be set-germs at 0 € R” such that 0 € AN B. We
say that A, B are transverse at 0 € R" if and only if:

dimLD(A) + dim LD(B) — dim(LD(A) N LD(B)) = n.

As a corollary of Theorem 2.15, we have the following preserving of transversality
result.

Corollary 2.17. Let A, B C R" be set-germs at 0 € R™ such that 0 € AN B,
and let h : (R",0) — (R™,0) be a bi-Lipschitz homeomorphism. Suppose that
A, B, h(A), h(B) satisfy condition (SSP). Then A and B are transverse at 0 € R"
if and only if h(A) and h(B) are transverse at h(0) = 0 € R".

On the other hand in [7] we introduced a notion of weak transversality and showed
in Theorem 3.5 that weak transversality is preserved under rather mild assumptions.
We are going to recall the result for reader convenience.

Definition 2.18. Let A, B C R™ be set-germs at 0 € R” such that 0 € AN B. We
say that A, B are weakly transverse at 0 € R™ if and only if D(A) N D(B) = 0.

Theorem 2.19. Let A, B be two set-germs at 0 € R™ such that 0 € AN B, and
let h : (R",0) — (R",0) be a bi-Lipschitz homeomorphism. Suppose that A or B
satisfies condition (SSP), and h(A) or h(B) satisfies condition (SSP). Then A
and B are weakly transverse at 0 € R"™ if and only if h(A) and h(B) are weakly
transverse at 0 € R™.
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