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1 Introduction

A pointed space X with a base point preserving map µ : X × X → X is
said to be a Hopf space if the restriction of µ to X ∨ X is homotopic to
id∨ id. A pointed Z/2Z space X is said a Hopf space with involution if X is
a Hopf space and the structure map µ : X ×X → X is equivariant and the
restriction of µ to X ∨X is equivariantly homotopic to id ∨ id.

The concept of a Hopf space came from that of a topological group and
a topological group G has an involution τ defined by τ(g) = g−1 for g ∈ G.
The product of G is not equivariant but it has the property

τ(xy) = τ(y)τ(x).

This leads us to the definition of Hopf space with anti involution . That
is, a Z/2Z space X which is a Hopf space is said to be a Hopf space with anti
involution if the structure map µ : X ×X → X is equivariant with respect
to the involution τ̃ defined by τ̃(x, y) = (τy, τx), and the restriction of µ to
X ∨X is equivariantly homotopic to id ∨ id.

Adams showed that Sn has a structure of Hopf space if and only if n =
0, 1, 3, 7. In [4] ,Iriye showed that the unit sphere of a real representation
space V of Z/2Z admits a structure of a Hopf space with involution if and
only if V is R1,1, R2,2, R4,4, R0,1, R0,2, R0,4 or R0,8.
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In this paper we shall show that a Z/2Z homology sphere with involution
of which ’type’ has a structure of Hopf space with involution or anti involu-
tion. From localization theorem we have that the fixed point set of a Z/2Z
homology sphere with involution is also a Z/2Z homology sphere. Therefore
we say that a Z/2Z homology n sphere whose fixed point set is a Z/2Z m
sphere is of type (n,m).

Theorem Let d = 1, 2 or 4. There exists a Z/2Z space X of type
(2d−1, p) which is a Hopf space with involution, if and only if p = d−1, 2d−1.
There exists a Z/2Z space X of type (2d− 1, p) which is a Hopf space with
anti involution, if and only if p = 0, d.

See theorem 5.12 and 5.13.
This paper is organized as follows: In §2 we define Hopf space with in-

volution or anti involution and offer examples. In §3 we introduce the Hopf
construction of a Hopf space with involution or anti iovolution and show that
its Hopf invariant is one. Also localization theorem plays an important role
in this paper. Thus we refer to this theorem in §4. Then in §5, we shall
show when an equivariant map from S4d−1 to S2d with involutions has Hopf
invariant one. This leads us to previous theorem.

The author wishes to express his hearty thanks to Professor Akira Kono
for his advices and encouragement.

2 Hopf space with involution, anti involu-
tion

Let (X µ) be a Hopf space. Suppose that X has an involution τ ,that is, X
is a Z/2Z space.

If τµ(x, y) = µ(τx, τy) for all x, y ∈ X and the restriction of µ to X ∨X
is equivariantly homotopic to id ∨ id ,then we say (X, µ, τ) is a Hopf space
with involution .

If τµ(x, y) = µ(τy, τx) for all x, y ∈ X and the restriction of µ to X ∨X
is equivariantly homotopic to id∨ id where the involution of X×X is defined
by

τ̃(x, y) = (τy, τx),

then we say (X,µ, τ) is a Hopf space with anti involution .
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Example 2.1 The unit spheres of R1,1,R2,2 ,R4,4 are Hopf spaces with in-
volution. See Iriye [4].

Example 2.2 Let G be a Lie group. Then the ordinary product of G makes
G a Hopf space. G has an involution τ : G → G defined by τ(x) = x−1.
Thus G with τ is a Hopf space with anti involution .

Example 2.3 GL(n,K) with the involution τ : GL(n,K) → GL(n,K) de-
fined by τ(A) = tA is a Hopf space with anti involution by the ordinary
product.

Example 2.4 We regard S3(resp. S7) as the unit sphere in H (resp. the
Cayley numbers O). Then the involution τ defined by τ(x) = x̄ makes S3(resp.
S7) a Hopf space with anti involution by the ordinary product in H (resp. O).

3 Hopf construction with involution

Given a map µ : A × B → C,the Hopf construction H(µ) : A ∗ B → ΣC is
defined by H(µ)(a, t, b) = (t, µ(a, b)) ,where a ∈ A, b ∈ B, t ∈ [0, 1].

Suppose that (X,µ,τ) is a Hopf space with involution or anti involution.
We introduce involutions to X ∗X, ΣX so as to make H(µ) : X ∗X → ΣX
equivariant. We define involutions τ0′, τ1′ : X ∗ X → X ∗ X and τ ′′0 , τ ′′1 :
ΣX → ΣX as follows:

τ ′0(x, t, y) = (τx, t, τy) τ ′1(x, t, y) = (τy, 1− t, τx) x, y ∈ X, t ∈ [0, 1]

τ ′′0 (t, x) = (t, τx) τ ′′1 (t, x) = (1− t, τx) x ∈ X, t ∈ [0, 1]

If (X,µ,τ) is a Hopf space with involution then H(µ) : (X∗X, τ ′0) → (ΣX, τ ′′0 )
is equivariant. If (X,µ,τ) is a Hopf space with anti involution then H(µ) :
(X ∗X, τ ′1) → (ΣX, τ ′′1 ) is equivariant.

Now (X,µ) is a Hopf space and let f = H(µ). In the following we use
Z/2Z as the coefficient ring of cohomology rings unless mentioned.

Theorem 3.5 Stasheff [5] Let (X,µ) be a Hopf space and Cfbe the mapping
cone of f = H(µ). Consider the next exact sequence.

→ H∗(Σ(X ∗X)) → H∗(Cf ) → H∗(ΣX) → H∗(X ∗X)
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If u, v ∈ H∗(X) are classes such that Σu, Σv ∈ H∗(ΣX) pull back to H∗(Cf )
then Σu ∪ Σv ∈ H∗(Cf ) comes from Σ(u ∗ v) ∈ H∗(Σ(X ∗ X)) which is
isomorphic to H∗(Cf , ΣX).

Theorem 3.6 Let n > 1. If σn−1 is a Z/2Z homology n − 1 sphere and
(σn−1, µ) is a Hopf space, then H∗(Cf ) =Z/2Z[x]/(x3) where degree of x is
n.

For n = 1,H∗(Cf ) =Z/2Z[x]/(x3) or Z/2Z .

Proof Consider the next exact sequence.

→ H̃∗(Σ(σn−1 ∗ σn−1)) → H̃∗(Cf ) → H̃∗(Σσn−1) → H̃∗(σn−1 ∗ σn−1)

And remark H∗(σn−1∗σn−1) ∼= H∗(S2n−1) , H∗(Σσn−1) ∼= H∗(Sn), n 6= 2n−1.
Then we have

H∗(Cf ) ∼=
{

Z/2Z ∗ = 0, n, 2n
0 otherwise.

Let u be the generator of Hn−1(σn−1) then Σu comes from x the generator
of Hn(Cf ) and x ∪ x comes from Σ(u ∗ u) the generator of H2n(Σ(σn ∗ σn)).
Hence x ∪ x is the generator of H2n(Cf ).

For the latter part of the theorem, consider the same exact sequence and
remark that n = 2n− 1 = 1.

→ H̃∗(Σ(σn−1 ∗ σn−1)) → H̃∗(Cf ) → H̃∗(Σσn−1) → H̃∗(σn−1 ∗ σn−1)

We obtain that f ∗ is a 0 map or an isomorphism. Hence, H∗(Cf ) =Z/2Z[x]/(x3)
or Z/2Z respectively.

Remark Let n > 1. Given f : σ2n−1 → σn where σi’s are Z/2Z homology
i spheres (i = n, 2n− 1),then

H∗(Cf ) ∼=
{

Z/2Z ∗ = 0, n, 2n
0 otherwise

and let x, y be the generator of Hn(Cf ), H
2n(Cf ) respectively. We define the

Hopf invariant γ(f) ∈Z/2Z by x2 = γ(f)y.

4



4 Localization theorem

For a compact Lie group G and a G space X with a fixed base point ∗, we
define H∗

G(X; Λ) as follows. Let PG → BG be the universal G bundle.

H∗
G(X; Λ) ≡ H∗(PG×GX; Λ)

where Λ is a ring. The reduced equivariant colomology H̃∗
G(X; Λ) is defined

as follows:

H̃∗
G(X; Λ) ≡ H∗(PG×GX,PG×G∗; Λ)

= ker s∗

where s is the section of PG×GX → BG defined by

s(x) = (y, ∗) where x ∈ BG, y ∈ p−1(x).

In the following we only consider the case G =Z/2Z and Λ =Z/2Z. In
that case, H∗

G ≡ H∗(BG) =Z/2Z[t].
Remark If G acts on X trivially, then PG×GX = BG × X. Hence

H∗
G(X) = H∗(X)⊗Z/2ZH∗

G.

We refer to the next theorem (Quillen [3]).

Theorem 4.7 (localization theorem) If X is a compact G space, then the
inclusion i of the fixed point set XG into X induces an isomorphism

H̃∗
G(X)[t−1]→̃H̃∗

G(XG)[t−1]

where H̃∗
G(X)[t−1] means the localization of H̃∗

G(X) by t−1.

From localization theorem we obtain two propositions.

Proposition 4.8 If X is a compact G space and H∗(X;Z/2Z) ∼= H∗(Sl;Z/2Z)
for some l ≥ 0 and XG 6= φ, then H∗(XG) ∼= H∗(Sm) for some m ≤ l.

Proof See Bredon [2].

Proposition 4.9 Let X be a compact G space. If XG 6= φ and H∗(X;Z/2Z)
is generated by one element as a graded Z/2Z algebra,then

i∗ : H̃∗
G(X) → H̃∗

G(XG) is monic.
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Proof First we prove that H̃∗
G(X) is a free H∗

Gmodule. Consider the Serre
spectral sequence Ej,k

i of the fiber space PG×GX → BG.
Let x denote the generator of H∗(X) and the degree of x be m. Then

Ep,q
2 = 0 (q /∈ mZ).

Also, X has a fixed point and p : PG×GX → BG has a section s. Thus
p∗ : H∗(BG) → H∗(PG×GX) is monic. The image of p∗ is

⊕
p≥0 Ep,0

∞ .
Therefore we have that

d0,m
m (1⊗ x) = 0.

Since x generates H∗(X) , the Serre spectral sequence is trivial. Therefore
H∗

G(X) is a free H∗
Gmodule. H̃∗

G(X) is a submodule of H∗
G(X) and it follows

that H̃∗
G(X) is a free H∗

Gmodule.
Then consider the following commutative diagram .

H̃∗
G(X) → H̃∗

G(X)[t−1]
↓ ↓

H̃∗
G(XG) → H̃∗

G(X)[t−1]

In the diagram the arrows which goes down means i∗ and the arrows
which goes adross are monic since H̃∗

G(X)andH̃∗
G(XG) are free H∗

Gmodules.
Hence by localization theorem we have that i∗ : H̃∗

G(X) → H̃∗
G(XG) is monic.

5 Proof of main theorem

Let Sn,m mean the set of G isomorphism classes of all Z/2Z homology n
spheres which are compact G spaces and whose fixed point sets are Z/2Z
homology m spheres. (Propsition 4.8 says that if X is a compact Z/2Z space
and at the same time a Z/2Z homology n sphere, then X ∈ Sn,m for some
m.)

Theorem 5.10 Let d = 1, 2 or 4. There exist σ4d−1,q ∈ S4d−1,q, σ2d,q′ ∈
S2d,q′ and a continuous Gmap f : σ4d−1,q → σ2d,q′ such that

H∗(Cf ) = Z/2Z[x]/(x3) where |x| = 2d,

that is,the Hopf invariant is one, if and only if (q, q′) = (4d− 1, 2d) or (2d−
1, d) or (2d− 1, 0).
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Remark Adams showed that

If H∗(X) ∼= H∗(S2n−1) and H∗(Y ) ∼= H∗(Sn), n ≥ 1,and there
exists f : X → Y such that H∗(Cf ) = Z/2Z[x]/(x3), then n =
1, 2, 4, 8.

Therefore the previous theorem tells about the equivariant case of n =
2, 4, 8. For the equivariant case of n = 1 see theorem 5.11.

Proof First we assume that there is a continuous G map f : σ4d−1,q →
σ2d,q′ such that H∗(Cf ) = Z/2Z[x]/(x3), |x| = 2d ,where σ4d−1,q ∈ S4d−1,q and
σ2d,q′ ∈ S2d,q′ .

By the proof of proposition 4.9, H̃∗
G(Cf ) and H̃∗

G(Cf
G) are free H∗

Gmodules
and from the localization theorem the ranks of H̃∗

G(Cf ) and H̃∗
G(Cf

G) are
same. Note that H̃∗

G(Cf
G) ∼= H̃∗(Cf

G)⊗ H∗
G. Therefore we have that

H̃∗(Cf
G) ∼= Z/2Z⊕ Z/2Z. (1)

Denotes the restricted map of f to G fixed point set by fG. Then we
have an exact sequence.

→ H̃∗(Σ0,1σ2d,q′G)
ΣfG∗→ H̃∗(Σ0,1σ4d−1,qG

)
k∗→ H̃∗(CfG)

j∗→ H̃∗(σ2d,q′G)
fG∗→ H̃∗(σ4d−1,qG

)

Here Σ0,1σ2d,q′G, Σ0,1σ4d−1,qG
, σ2d,q′G and σ4d−1,qG

are Z/2Z homology q′ +
1, q + 1, q′, q spheres respectively and CfG = Cf

G. Then from (1) fG∗ and
ΣfG∗ are 0 maps. Now we obtain that

H̃∗(Cf
G) ∼= H̃q′(Σ0,1σ4d−1,qG

)⊕ H̃q+1(σ2d,q′G).

Let y be the image of the generator of H̃q′(Σ0,1σ4d−1,qG
) and y′ be a pull

back of the generator of H̃q+1(σ2d,q′G). Therefore H̃∗(Cf
G) is a Z/2Z vector

space generated by y and y′. We consider y and y′ to be elements of H̃∗
G(Cf

G)
by

H̃∗
G(Cf

G) ∼= H̃∗(Cf
G)⊗ H∗

G as an algebra.

And also we can consider x, x2 to be elements of H̃∗
G(Cf ) by the isomor-

phisms
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H̃∗
G(Cf ) ∼=

⊕

q>0,p≥0

Ep,q
∞ ∼=

⊕

q>0,p≥0

Ep,q
2 as an H∗

Gmodule

⊕

q>0

E0,q
2
∼= H̃∗(Cf ) as a Z/2Z module.

Here x, x2 are the basis of H̃∗
G(Cf ) as an H∗

Gmodule.

H̃∗
G(Cf ) 3

{
x ∗ = 2d
x2 ∗ = 4d

H̃∗
G(Cf

G) 3
{

y ∗ = q′

y′ ∗ = q + 1

First,it is easily seen that y′2 = 0 since

y′2 = k∗((k∗)−1y)2

= k∗0 = 0.

Now soppose i∗(x) = at2d−q′y + bt2d−(q+1)y′ where a, b ∈ Z/2Z, H∗
G =

Z/2Z[t], i : Cf
G → Cf . Then we have that

i∗(x2) = i∗(x)2

= at4d−2q′y2 + bt4d−2(q+1)y′2

= at4d−2q′y2.

While proposition 4.9 says i∗ is monic. Hence a 6= 0 and y2 6= 0. Thus we
have

a = 1 and 2deg y = q′ or q + 1.

First case We consider the first case q′ = 0.
If we assume b = 0 ,

i∗(x) = t2dy

i∗(x2) = t4dy2 = t4dy.
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Thus Im i∗ is contained in the H∗
Gsubmodule generated by y while localization

theorem says i∗ : H̃∗
G(Cf )[t

−1] → H̃∗
G(Cf

G)[t−1] is an isomorphism. Therefore
b = 1 and we have that

i∗(x) = t2dy + t2d−(q+1)y′ and 2d ≥ q + 1.

Here assume that q + 1 6= 2d. Then it follows that

Sq2d−(q+1)(i∗x) =
∑

i+j=2d−(q+1)

Sqi(t2d)Sqj(y) + t4d−2(q+1)y′

= t4d−2(q+1)y′ since 2d = 2p.

While i∗(Sq2d−(q+1)x) = i∗(0 or t2d−(q+1)x)

= 0 or t4d−(q+1)y + t4d−2(q+1)y′.

Previous two equations contradict each other. Hence we have q+1 = 2d,that
is,q′ = 0, q = 2d− 1.

Second case Next we assume 2q′ = q + 1. Then (q + 1) − q′ = q′ ≤
2d, y2 = y′ and i∗(x) = t2d−q′y + bt2d−2q′y2.

a) Now assume that b = 0 , i.e., i∗(x) = t2d−q′y. Then

i∗(Sqq′(x)) = Sqq′(i∗x)

= Sqq′(t2d−q′y)

=
(

2d−q′
q′

)
t2dy + t2d−q′y2 (2)

Here if we suppose that q′ 6= 2d (0 ≤ q′ ≤ 2d), then Sqq′(x) = 0 or tq
′
x.

Thus
i∗(Sqq′x) = 0 or t2dy

and this contradicts to (2). Therefore we obtain

q′ = 2d, q = 4d− 1.

b) The last case is that i∗(x) = t2d−q′y + t2d−2q′y2. Here 2d−2q′ ≥ 0, that
is, d ≥ q′.

Apply the Adams’ theorem in remark in §5 to the sequence

σ4d−1,qG → σ2d,q′G → CfG → Σ0,1σ4d−1,qG → Σ0,1σ2d,q′G →
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where q = 2q′ − 1, H∗(CfG) = Z/2Z[y]/(y3).

And we obtain that q = 2r for some r ≥ 0.
Compute i∗(Sq2q′(x)) and we have that

i∗(Sq2q′(x)) = Sq2q′(t2d−q′y + t2d−2q′y2)

=
(

2d−q′
2q′

)
t2d+q′y +

(
2d−q′

q′

)
t2dy2 +

(
2d−2q′

2q′

)
t2dy2

=
(

2d−2q′
2q′

)
t2d+q′y + {

(
2d−q′

q′

)
+

(
2d−2q′

2q′

)
}t2dy2.

If we suppose that q′ 6= d(0 < q′ ≤ d), then Sq2q′(x) = 0 or t2q′x. And it
follows that

i∗(Sq2q′(x)) = 0 or t2d+q′y + t2dy2.

Hence we obtain
(

2d−q′
2q′

)
=

(
2d−q′

q′

)
+

(
2d−2q′

2q′

)
mod 2.

Let 2d = 2p(p ≥ r + 1) and we have

(
2p−2r

2r+1

)
=

(
2p−2r

2r

)
+

(
2p−2r+1

2r+1

)
mod 2

(
2p−r−1

2

)
=

(
2p−r

1

)
+

(
2p−r−1

1

)
mod 2

(2p−r − 1)(2p−r−1 − 1) = 0 mod 2

Therefore we obtain

p− r = 0 or p− r − 1 = 0.

But p ≥ r + 1. Hence p = r + 1, i.e.,

q′ = d, q = 2d− 1.

We complete the proof of the former part of theorem.
All we have to do is to show the existence of σ4d−1,q ∈ S4d−1,q, σ2d,q′ ∈

S2d,q′ and a continuous G map f : σ4d−1,q → σ2d,q′ such that

H∗(Cf ) = Z/2Z[x]/(x3) where |x| = 2d,
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for (q, q′) = (4d−1, 2d), (2d−1, d), (2d−1, 0). We construct these in theorem
5.12,5.13. Q.E.D.

Remark A part of previous theorem can be proved by using Bredon’s
theorem [2, pp.425–427 theorem 11.1]. But his proof uses a not obvious fact.
Thus we offered our own proof.

Theorem 5.11 There exist σ1,q ∈ S1,q, σ1,q′ ∈ S1,q′ and a continuous Gmap
f : σ1,q → σ1,q′ such that

H∗(Cf ) =
Z/2Z[x]/(x3) where |x| = 1
or Z/2Z

,if and only if (q, q′) = (1, 1) or (0, 0).

Proof First we assume that there are σ1,q ∈ S1,q, σ1,q′ ∈ S1,q′ and a
continuous G map f : σ1,q → σ1,q′ such that

H∗(Cf ) = Z/2Z[x]/(x3) where |x| = 1.

a)We suppose (q, q′) = (0, 1). Consider the exact sequence

→ H̃∗(Σ0,1σ1,1G
)

ΣfG∗→ H̃∗(Σ0,1σ1,0G
)

k∗→ H̃∗(CfG)
j∗→ H̃∗(σ1,1G

)
fG∗→ H̃∗(σ1,0G

).

It is easily seen that f ∗ and ΣfG∗ are 0 maps and that

H̃∗(Cf
G) ∼=

{
Z/2Z⊕ Z/2Z ∗ = 1
0 otherwise

.

Let y, y′ be the basis of H̃1(Cf
G). Consider y and y′ to be elements of

H̃∗
G(Cf

G) and x, x2 to be elements of H̃∗
G(Cf ) as we did in the proof of theorem

5.10.
Let i∗(x) = ay + by′ where a, b ∈Z/2Z. Then i∗(x2) = 0. This contradicts

to proposition 4.9. Thus (q, q′) 6= (0, 1).
b) Next we suppose (q, q′) = (1, 0). Consider the exact sequence

→ H̃∗(Σ0,1σ1,0G
)

ΣfG∗→ H̃∗(Σ0,1σ1,1G
)

k∗→ H̃∗(CfG)
j∗→ H̃∗(σ1,0G

)
fG∗→ H̃∗(σ1,1G

).

It is easily seen that f ∗ and ΣfG∗ are 0 maps and that

H̃∗(Cf
G) ∼=

{
Z/2Z ∗ = 0, 2
0 otherwise.
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Let y, y′ be the generator of H̃0(Cf
G) and H̃2(Cf

G) respectively and con-
sider y and y′ to be elements of H̃∗

G(Cf
G), x and x2 to be elements of H̃∗

G(Cf ).
Let i∗(x) = aty where a ∈Z/2Z. Then i∗(x2) = a2t2y. This contradicts

to localization theorem. Thus (q, q′) 6= (1, 0).
Next we assume that there is σ1,q ∈ S1,q, σ1,q′ ∈ S1,q′ and a continuous G

map f : σ1,q → σ1,q′ such that

H̃∗(Cf ) = 0.

a’) Just as we have seen in a),

H̃∗(Cf
G) ∼=

{
Z/2Z⊕ Z/2Z ∗ = 1
0 otherwise.

Therefore H̃∗
G(Cf

G) 6= 0. This contradicts to localization theorem.
b’) Just as b),

H̃∗(Cf
G) ∼=

{
Z/2Z ∗ = 0, 2
0 otherwise.

Therefore H̃∗
G(Cf

G) 6= 0. This contradicts to localization theorem.
Actually we construct f : σ1,q → σ1,q′ (q, q′) = (1, 1), (0, 0) as follows.

Let S1 = {z ∈ C||z| = 1} and τ denote the involution of S1 by conjugation.
Here (S1, idS1) ∈ S1,1 and (S1, τ) ∈ S1,0. Let f0, f1 be maps from S1 to S1

defined by
f0(z) = z, f1(z) = z2.

Both of f0, f1 are equivariant whether S1 takes the trivial involution or the
involution τ .

It follows easily
Cf0

∼= D2, Cf1
∼= RP2.

Thus H∗(Cf0)
∼= Z/2Z, H∗(Cf1)

∼= Z/2Z[x]/(x3) where |x| = 1.

Theorem 5.12 Let d = 1, 2 or 4. There exists σ2d−1,p ∈ S2d−1,p which has
a structure of Hopf space with involution,if and only if p = d− 1, 2d− 1.

Actually the unit sphere of R0,2d,Rd,d have structures of Hopf space with
involution.
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Proof First we show that the unit spheres of R0,2d and Rd,d are Hopf
space with involution.

Let Sn,m denote the unit sphere of Rn,m. It is trivial that S0,2d is a Hopf
space with involution . Hence we consider Sd,d.

Rd,d is identified with L ∼= K⊕Kω where ω2 = −1, L = C,H, Cayley numbers O,
K = R,C,H for d = 1, 2, 4 respectively. And also τ |K = id, τ |Kω

= −1.
With this involution the natural product µ of C,H, Cayley numbers O be-
comes a equivariant map. And Sd,d with this product is a Hopf space with
involution . See Iriye [4].

Consider the Hopf constructions with involution of S0,2d,Sd,d ,and we
obtain the existence of σ4d−1,q ∈ S4d−1,q, σ2d,q′ ∈ S2d,q′ and a continuous
Gmap f : σ4d−1,q → σ2d,q′ such that

H∗(Cf ) = Z/2Z[x]/(x3) where |x| = 2d,

for (q, q′) = (4d− 1, 2d) and (2d− 1, d).
For the former part of the proposition consider the Hopf construction

with involution and apply theorem 5.10.
Assume that σ2d−1,p ∈ S2d−1,p is a Hopf space with involution. Let f be

the Hopf construction of the Hopf structure µ.

f : σ2d−1,p ∗ σ2d−1,p → Σ0,1σ2d−1,p

Remark that

σ2d−1,p ∗ σ2d−1,p ∈ S4d−1,2p+1

Σ0,1σ2d−1,p ∈ S2d,p+1.

Hence theorem 5.10 says

(2p + 1, p + 1) = (4d− 1, 2d) or (2d− 1, d) or (2d− 1, 0).

The solutions without contradictions are p = d− 1, 2d− 1.

Theorem 5.13 Let d = 1, 2 or 4. There exists σ2d−1,p ∈ S2d−1,p which is a
Hopf space with anti involution,if and only if p = 0, d.

Actually the unit spheres of R2d−1,1,Rd−1,d+1 are Hopf spaces with anti
involution.
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Proof First we show that S2d−1,1,Sd−1,d+1 have structures of Hopf space
with anti involution.

Identify R2d with L ∼= K⊕Kω where ω2 = −1, L = C,H, Cayley numbers O,
K = R,C,H for d = 1, 2, 4 respectively. We introduce liner involutions τ0, τ1

of K⊕Kω as follows

τ0(x + yω) = x̄ + yω

τ1(x + yω) = x̄− yω for x, y ∈ K.

Here the standard product of C,H, Cayley numbers O has the property

τi(zw) = τi(w)τi(z) for z, w ∈ L, i = 0, 1.

Identify Sd−1,d+1,S2d−1,1 with the unit spheres of (R2d, τ0), (R
2d, τ1) re-

spectively and then Sd−1,d+1,S2d−1,1 become Hopf space with anti involution
with the standard product of L.

Consider the Hopf constructions with anti involution of S2d−1,1,Sd−1,d+1

and we obtain the existence of σ4d−1,q ∈ S4d−1,q, σ2d,q′ ∈ S2d,q′ and a contin-
uous G map f : σ4d−1,q → σ2d,q′ such that

H∗(Cf ) = Z/2Z[x]/(x3) where |x| = 2d,

for (q, q′) = (2d− 1, 0) and (2d− 1, d).
For the former part of the proposition consider the Hopf construction

with anti involution and apply theorem 5.10.
Assume that σ2d−1,p ∈ S2d−1,p has a structure of Hopf space with anti

involution. Let f be the Hopf construction of the Hopf structure µ.

f : σ2d−1,p ∗ σ2d−1,p → Σ0,1σ2d−1,p

Remark that

(σ2d−1,p ∗ σ2d−1,p)G = {(x,
1

2
, τx) ∈ σ2d−1,p ∗ σ2d−1,p| x ∈ σ2d−1,p}

∈ S2d−1,2d−1

(Σ1,0σ2d−1,p)G = {(1
2
, x) ∈ Σ1,0σ2d−1,p| x ∈ (σ2d−1,p)G}

∈ Sp,p.

Thus we have that
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σ2d−1,p ∗ σ2d−1,p ∈ S4d−1,2d−1

Σ1,0σ2d−1,p ∈ S2d,p.

Hence theorem 5.10 says

(2d− 1, p) = (4d− 1, 2d) or (2d− 1, d) or (2d− 1, 0).

The solutions without contradictions are p = d, 0.
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