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1 Introduction

Assume G is a topological group and S, S ′ are subspaces of G, each of which
contains the unit as its base point. There is the commutator map c from
S ∧ S ′ to G which maps (x, y) ∈ S ∧ S ′ to xyx−1y−1 ∈ G. We say S and S ′

homotopy-commute in G if c is null homotopic.
In this paper, we describe the homotopy-commutativity of the case G =

SO(n + m− 1), S = SO(n) and S ′ = SO(m) where n,m > 1. Here we use
the usual embeddings

SO(1) ⊂ SO(2) ⊂ SO(3) ⊂ · · · .
Trivially SO(n) and SO(m) homotopy-commute in SO(n + m). And it is
known that if n + m > 4, SO(n) and SO(m) do not homotopy-commute
in SO(n + m− 2). (See [1] and [2].) But the homotopy-commutativity in
SO(n + m− 1) has not been solved exactly.

We shall say a pair (n,m) is irregular if SO(n) and SO(m) homotopy-
commute in SO(n + m− 1), and regular if they do not. In [1] the following
problem is proposed; ”when is (n, m) irregular?”, and the next theorem is
showed.

(James and Thomas) Let n+m 6= 4, 8. If n or m is even or if d(n) = d(m)
then (n,m) is regular, where d(q), for q ≥ 2, denotes the greatest power of 2
which devides q − 1.
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In this paper we shall prove the more strict result as showed in the next
theorem.

If n or m is even or if
(

n+m−2
n−1

)
≡ 0 mod 2 then (n,m) is regular.

We identify RPk−1 ik
↪→ SO(k) by the following way. Let i′k : RPk−1 →

O(k) be the map which attatches a line l ∈ RPk−1 with i′k(l) ∈ O(k) defined
by

i′k(l)(v) = v − 2(v, e)e,

where e is a unit vector of l and v ∈ Rk. And let ik(l) = i′k(l0)
−1 · i′k(l) where

l0 is the base point of RPk−1. Then ik preserves the base points.
Theorem 1.2 follows from the next theorem.
Let n and m be odd. RPn−1 ⊂ SO(n) and RPm−1 ⊂ SO(m) homotopy-

commute in SO(n + m− 1) if and only if

(
n+m−2

n−1

)
≡ 1 mod 2.

Let SO be lim→(SO(1) ⊂ SO(2) ⊂ SO(3) ⊂ · · ·) and consider the
fibration SO(n + m− 1) → SO → SO/SO(n + m− 1). Then we have a
sequence of spaces

· · · → ΩSO
Ωp→ Ω(SO/SO(n + m− 1))

δ→ SO(n + m− 1)
i→ SO

p→ SO/SO(n + m− 1).

We can see i ◦ c|
RPn−1∧RPm−1 ' ∗ : RPn−1 ∧RPm−1 → SO. This means

there exists λ : RPn−1 ∧RPm−1 → ΩSO/SO(n + m− 1) such that δ ◦ λ =
c|
RPn−1∧RPm−1 . The construction of λ and the cohomology map λ∗ are

argued in §2. We describe about lifts of λ in §3 and finally, in §4, we determine
when a lift of λ exists, which means when c|

RPn−1∧RPm−1 ' ∗.

2 Lift λ of c

Definition A sequence of spaces Xi and continuous maps fi

· · · → Xi+1
fi→ Xi → · · · f0→ X0

is called a fibration sequence if, for any i ≥ 0, there exists a fibration Y
(2)
i

ji→
Y

(1)
i

πi→ Y
(0)
i , homotopy equivalence maps ψ

(k)
i : Xi+k → Y

(k)
i (k =0,1,2), and
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the following diagram commutes upto homotopy.

Xi+2
fi+1→ Xi+1

fi→ Xi

'↓ ψ
(2)
i '↓ ψ

(1)
i '↓ ψ

(0)
i

Y
(2)
i

ji→ Y
(1)
i

πi→ Y
(0)
i

For example, given a fibration F → E → B, there is a fibration sequence

· · · → ΩF → ΩE → ΩB → F → E → B.

Consider the fibration SO → SO/SO(n + m− 1) with the fibre SO(n + m− 1).
Then we have a fibration sequence.

· · · → ΩSO
Ωp→ Ω(SO/SO(n + m− 1))

δ→ SO(n + m− 1)
i→ SO

p→ SO/SO(n + m− 1)

Obviouly i ◦ c : SO(n) ∧ SO(m) → SO is null homotopic. This means there
exists a lift of c, that is, a map λ : RPn−1∧RPm−1 → Ω(SO/SO(n + m− 1))
such that δ ◦ λ ' c.

In R.Bott[3] it is showed that the following map λ0 : SO(n) ∧ SO(m) →
Ω(SO/SO(n + m− 1)) is a lift of c.

Recall the fibration SO(k − 1) → SO(k)
pk→ Sk−1. Define h as h =

Σ(pn ∧ pm) : Σ(SO(n)∧ SO(m)) → Σ(Sn−1 ∧ Sm−1) ' Sn+m−1. Then adh is
a lift of c in the following fibration sequence. (See [5].)

· · · → ΩSO(n + m) → ΩSn+m−1 → SO(n + m− 1) → SO(n + m) → Sn+m−1

↖ adh ↑ c
SO(n) ∧ SO(m)

The fibration SO(n + m) → Sn+m−1 is the restriction of SO → SO/SO(n + m− 1)

to Sn+m−1 = SO(n + m)/SO(n + m− 1)
j

↪→ SO/SO(n + m− 1). Therefore
we define λ0 as Ωj ◦ adh. Refer to the commutative diagram below.

The rest of this section is devoted to the computation of the cohomology
map of λ. And throughout this paper we use Z/2Z as the coefficient ring of
cohomology unless mentioned.

First we refer to the cohomology rings of spaces which are used in this
paper, that is,

H∗(Ω0SO) = Z/2Z[α2, α4, α6, · · ·]/(α4k − α2
2k),

H∗(Ω(SO/SO(n + m− 1))) = Z/2Z[α′n+m−2, α
′
n+m, · · ·]/(α′4k − α′22k),

H∗(SO(k)) = ∆(x1, · · · , xk−1),

H∗(SO(k)/SO(k − l)) = ∆(x′k−l, · · · , x′k−1),
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ΩSO

Ω(SO/SO(n + m− 1))

SO(n + m− 1)

SO

SO/SO(n + m− 1)
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SO(n + m− 1)

SO(n + m)

Sn+m−1

SO(n) ∧ SO(m)
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where deg(α2i) = 2i, deg(α′2i) = 2i, deg(xi) = i. And also

Ωp∗(α′k) = αk.

λ∗0(α
′
n+m−2) = xn−1⊗ xm−1. Proof. Consider the fibration pk : SO(k) →

Sk−1 with the fibre SO(k − 1). Let ci be the generator of Hi(Si). Then
p∗k(ck−1) = xk−1. Thus we have

h∗(cn+m−1) = Σ(pn ∧ pm)∗(Σcn−1 ⊗ cm−1)

= Σ(xn−1 ⊗ xm−1).

Hence (adh)∗(σcn+m−1) = xn−1⊗xm−1, where σ is the cohomology suspension
σ : H∗+1(X) → H∗(ΩX).

On the other hand, j∗(xn+m−1) = cn+m−1 means

(Ωj)∗(α′n+m−2) = (Ωj)∗(σx′n+m−1)

= σcn+m−1.

Therefore it follows that

λ∗0(α
′
n+m−2) = (adh)∗(Ωj)∗(α′n+m−2)

= xn−1 ⊗ xm−1.

Q.E.D.

Now let λ = λ0 ◦ (im ∧ in) : RPn−1 ∧RPm−1 → Ω(SO/SO(n + m− 1))
and in the following we use c as the commutator map from RPn−1∧RPm−1 to
SO(n + m− 1). Easily we have i∗k(xk−1) = τ k−1 where τ means the generator
of H1(RPk−1). (See Whitehead [4].) Thus

λ∗(α′n+m−2) = (im ∧ in)∗ ◦ λ∗0(α
′
n+m−2)

= τn−1 ⊗ τm−1.

3 Lift of λ and homotopy commutativity

In this section we prove the next theorem.
Let n, m be odd.
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1. c ' ∗ if and only if there exists a lift of λ, that is, a map x : RPn−1 ∧
RPm−1 → Ω0(SO) such that λ = Ωp ◦ x.

2. c ' ∗ if and only if there exists x : RPn−1 ∧RPm−1 → Ω0(SO) such
that x∗(αn+m−2) ' τn−1 ⊗ τm−1.

Proof. 1. The sequence

· · · → Ω0(SO)
Ωp→Ω(SO/SO(n + m− 1))

δ→SO(n + m− 1)

is a fibration sequence and λ is a lift of c. Therefore the statement follows.
2. By the first statement it is sufficient to prove that x is a lift of λ if and

only if x∗(αn+m−2) = τn−1 ⊗ τm−1. We need the following lemma.
Let n and m be odd. Then

πi(SO/SO(n + m− 1)) =
{

0 i ≤ n + m− 2
Z/2Z i = n + m− 1

Proof. Consider the fibration

SO(n + m + 1)/SO(n + m− 1) → SO/SO(n + m− 1) → SO/SO(n + m + 1)

and see the homotopy exact sequence. Remark that πi(SO/SO(2k + 1)) = 0
for i ≤ 2k and we obtain

πn+m−1(SO/SO(n + m− 1)) = πn+m−1(SO(n + m + 1)/SO(n + m− 1)).

It is known that πn+m−1(SO(n + m + 1)/SO(n + m− 1)) = Z/2Z provided
n + m− 1 is odd. Hence we obtained the statement.

Q.E.D.

By Lemma 3.6 it follows that

πi(Ω(SO/SO(n + m− 1))) =
{

0 i ≤ n + m− 3
Z/2Z i = n + m− 2.

Now add cells ei(i ≥ 1) to Ω(SO/SO(n + m− 1)) so that πk(Ω(SO/SO(n + m− 1))
vanishes for k ≥ n+m− 1, where dimei ≥ n+m. We shall call the obtained
space K, that is,

Ω(SO/SO(n + m− 1)) ↪→ Ω(SO/SO(n + m− 1)) ∪ e1 ∪ e2 ∪ · · · = K (1)
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and

πi(K) =
{

Z/2Z i = n + m− 2
0 otherwise.

(2)

Thus K is an Eilenberg-Maclane space K(Z/2Z; n + m − 2). Let γ denote
the inclusion map from Ω(SO/SO(n + m− 1)) to K. Here

γ∗ : πn+m−2(Ω(SO/SO(n + m− 1))) → πn+m−2(K)

is not a 0-map. This means that by the isomorphism

[Ω(SO/SO(n + m− 1)), K] ∼= Hn+m−2(Ω(SO/SO(n + m− 1)))

γ corresponds to α′n+m−2, that is, γ∗u = α′n+m−2 where u is the generator of
Hn+m−2(K).

On the other hand, (1) and (2) imply that γ∗ : πi(Ω(SO/SO(n + m− 2))) →
πi(K) is isomorphic for i ≤ n + m− 2 and epic for i ≥ n + m− 1. Then by
Whitehead’s theorem

[RPn−1 ∧RPm−1, Ω(SO/SO(n + m− 1))] ∼= [RPn−1 ∧RPm−1, K]
∼= Hn+m−2(RPn−1 ∧RPm−1).

Thus maps f and g : RPn−1 ∧RPm−1 → Ω(SO/SO(n + m− 2)) are homo-
topic if and only if f ∗(α′n+m−2) = g∗(α′n+m−2).

Now we assume x : RPn−1 ∧RPm−1 → Ω(SO/SO(n + m− 1)) satisfies
that x∗(αn+m−2) = τn−1 ⊗ τm−1. Then

(Ωp ◦ x)∗(α′n+m−2) = τn−1 ⊗ τm−1.

By §2 λ∗(α′n+m−2) = τn−1 ⊗ τm−1. Thus we obtain Ωp ◦ x ' λ and x is a lift
of λ.

The inverse is trivial and the proof of theorem 3.5 is finished.

4 Existence of lift of λ

In this section we prove the next theorem which completes the proof of The-
orem 1.3. Let n and m be odd. There exists a map x : RPn−1 ∧RPm−1 →
Ω0(SO) such that x∗(αn+m−2) = τn−1 ⊗ τm−1 if and only if

(
n+m−2

n−1

)
≡ 1 mod 2.
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Proof. First consider

θ := (r1 − 1)⊗̂(r1 − 1)⊗̂(r∞ − 1)⊗̂(r∞ − 1) ∈ K̃O(Σ2(RP∞ ∧RP∞)).

Here r1 is the Möbius line bundle over S1 and r∞ is the canonical line bundle
over RP∞. Now we compute the total Stiefel Whitney class of θ. We start
from the next lemma.

Let A = 1+a1+a2+· · · ∈ H∗∗(RP∞×RP∞) where ai ∈ Hi(RP∞×RP∞)
and let si ∈ H∗(S1 × S1 ×RP∞ ×RP∞) (i = 1, 2) be the pull back of the
generator of H1(S1) by the canonical projection from S1×S1×RP∞×RP∞

to the ith factor S1. Then we have

(A + s1 + s2)A

(A + s1)(A + s2)
=

A2 + s1s2

A2
∈ H∗∗(S1 × S1 ×RP∞ ×RP∞).

Proof. By direct computation, we see

(A + s1 + s2)A

(A + s1)(A + s2)
=

{(A + s1)
2 + (A + s1)s2}A

(A + s1)2(A + s2)

=
(A2 + s2A + s1s2)A

A2(A + s2)

=
A(A + s2)

2 + (A + s2)s1s2

A(A + s2)2

=
A2 + s1s2

A2 ·
Q.E.D.

Let π : S1 × S1 × RP∞ × RP∞ → Σ2(RP∞ ∧ RP∞) be the canonical
projection and decompose π∗θ as

π∗θ = r1 × r1 × r∞ × r∞ + 1× 1× r∞ × r∞ − 1× r1 × r∞ × r∞ − r1 × 1× r∞ × r∞
− r1 × r1 × 1× r∞ − 1× 1× 1× r∞ + 1× r1 × 1× r∞ + r1 × 1× 1× r∞
− r1 × r1 × r∞ × 1− 1× 1× r∞ × 1 + 1× r1 × r∞ × 1 + r1 × 1× r∞ × 1

+ r1 × r1 × 1× 1 + 1× 1× 1× 1− 1× r1 × 1× 1− r1 × 1× 1× 1.

Then the total Stiefel Whitney class w(π∗θ) of π∗θ is given by

w(π∗θ) =
(1 + τ 1 + τ 2 + s1 + s2)(1 + τ 1 + τ 2)

(1 + τ 1 + τ 2 + s1)(1 + τ 1 + τ 2 + s2)
· (1 + s1 + s2)

(1 + s1)(1 + s2)

·
{

(1 + τ 1 + s1 + s2)(1 + τ 1)

(1 + τ 1 + s1)(1 + τ 1 + s2)
· (1 + τ 2 + s1 + s2)(1 + τ 2)

(1 + τ 2 + s1)(1 + τ 2 + s2)

}−1

.
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Here τ i (i = 1, 2) is the pull back of the generator of the cohomology ring of
the ith factor of RP∞ ×RP∞. By the previous lemma, we obtain

w(π∗θ) =
1 + τ 2

1 + τ 2
2 + s1s2

1 + τ 2
1 + τ 2

2

· (1 + s1s2) · (1 + τ 2
1 + s1s2

1 + τ 2
1

)−1 · (1 + τ 2
2 + s1s2

1 + τ 2
2

)−1

= {1 + (1 + τ 2
1 + τ 2

2)
−1s1s2}(1 + s1s2){1 + (1 + τ 2

1)
−1s1s2}{1 + (1 + τ 2

2)
−1s1s2}

= 1 + s1s2{(1 + τ 2
1 + τ 2

2)
−1 + 1 + (1 + τ 2

1)
−1 + (1 + τ 2

2)
−1}

= 1 + s1s2

{ ∞∑

i=0

(τ 2
1 + τ 2

2)
i + 1 +

∞∑

i=0

τ 2i
1 +

∞∑

i=0

τ 2i
2

}

= 1 + s1s2

{ ∞∑

i=2

i−1∑

j=1

(
i
j

)
τ 2j

1 τ 2i−2j
2

}
.

Therefore we see

w(θ) = 1 + Σ2
{ ∞∑

i=2

i−1∑

j=1

(
i
j

)
τ 2j ⊗ τ 2i−2j

}
.

Let f be the classifing map of θ, that is, the map

f : Σ2(RP∞ ∧RP∞) → BSO

such that f ∗(ξ) = θ where ξ = limn→∞(ξn−n) and ξn is the universal SO(n)
vector bundle over BSO(n).

It is known that H∗(BSO) = Z/2Z[w1, w2, · · ·] where wi is the ith Stiefel
Whitney class. Let ιk : RPk → RP∞ be the inclusion map and let

x0 := (ad2f) ◦ (ιn−1 ∧ ιm−1) : RPn−1 ∧RPm−1 → ΩSO.

Then it follows that for N ≥ 1

x∗0(α2N) = (ιn−1 ∧ ιm−1)
∗(ad2f)∗σ2w2N+2

= (ιn−1 ∧ ιm−1)
∗(N−1∑

j=1

(
2N
2j

)
τ 2j ⊗ τ 2N−2j

)
.

Particularly x∗0(αn+m−2) =
(

n+m−2
n−1

)
τn−1 ⊗ τm−1. Thus if

(
n+m−2

n−1

)
≡ 1 then

there exists x0 : RPn−1 ∧RPm−1 → ΩSO such that x∗0(αn+m−2) = τn−1 ⊗
τm−1.
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Now we shall prove the inverse, that is, prove that if
(

n+m−2
n−1

)
≡ 0 mod 2

then x∗(αn+m−2) = 0 for any x : RPn−1 ∧RPm−1 → ΩSO. Let n = 2a + 1,
m = 2b + 1 where a, b ∈ Z, a, b ≥ 1. Moreover we set a ≤ b.

Here we use the Steenrod’s square operators Sqi. In H∗(Ω0SO), Sqi acts
as follows

Sqi(α2j) =
{ (

2j+1
i

)
α2j+i i is even

0 i is odd.

Let x : RP2a ∧RP2b → Ω0SO be an arbitrary map.
We set a, b, x as above then

x∗(α2) = 0 and x∗(α6) = τ 2 ⊗ τ 4 + τ 4 ⊗ τ 2 or 0.

Proof. Since x∗(α2) ∈ H∗(RP2a∧RP2b), x∗(α2) = τ ⊗ τ or 0. If x∗(α2) =
τ ⊗ τ , then we have

Sq1x∗(α2) = τ 2 ⊗ τ + τ ⊗ τ 2.

On the other hand,
Sq1x∗(α2) = x∗(Sq1α2) = 0.

Therefore x∗(α2) = 0.
Next we consider x∗(α6). If (a, b) = (1, 1) then x∗(α6) = 0, and if (a, b) =

(1, 2) we can see x∗(α6) = τ 2 ⊗ τ 4 or 0 as asserted. And otherwise, set

x∗(α6) = ρ1τ ⊗ τ 5 + ρ2τ
2 ⊗ τ 4 + ρ3τ

3 ⊗ τ 3 + ρ4τ
4 ⊗ τ 2 + ρ5τ

5 ⊗ τ 1,

where ρi ∈ Z/2Z and the statement follows the next two equations.

Sq1x∗(α6) = x∗(Sq1α6) = 0

Sq2x∗(α6) = x∗(α8) = x∗(α2)
4 = 0

Q.E.D.

Remark that if 2(a+ b) = 2d−2 for some d ∈ N, then
(

2(a+b)
2i

)
≡ 1 mod 2

for any i ∈ Z such that 0 ≤ i ≤ a + b. And also when 2(a + b) = 2d for some
d ∈ N, (

2(a+b)
2i

)
≡

{
1 mod 2 i = 0 or a + b
0 mod 2 otherwise.
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In this case

x∗(α2(a+b)) = x∗(α2d)

= x∗(a power of α2)

= 0

as asserted. Hence we can assume that 2(a+b) 6= 2k or 2k−2 for any k ∈ N.
Next we shall prove the next theorem. Let a, b and x be as above. If

x∗(α6) = 0 then x∗(α2(a+b)) = 0. Proof. Let d be the number which satisfies

2d < 2(a + b) < 2d+1 − 2 d ∈ N. (d ≥ 3)

We distinguish between the following two cases.

I)
2d < 2(a + b) < 3 · 2d−1 − 2 (3)

II)
3 · 2d−1 − 2 ≤ 2(a + b) < 2d+1 − 2 (4)

Let a, b and x be as above. In any of the case I) and II), if x∗(α6) = 0
then one of the following holds.

i) x∗(α2k−2) = 0 for 3 ≤ k ≤ d− 1.

ii) 2a = 2r − 2 for some r ∈ N, r ≤ d− 1 and

x∗(α2k−2) =
{

0 3 ≤ k ≤ r
τ 2r−2 ⊗ τ 2k−2r

r + 1 ≤ k ≤ d− 1.

Proof. We use induction, that is, we prove the next two propositions.

a) If x∗(α2k−1−2) = 0 and 4 ≤ k ≤ d− 1, then one of the followings holds.

• x∗(α2k−2) = 0.

• 2a = 2k−1 − 2 and x∗(α2k−2) = τ 2k−1−2 ⊗ τ 2k−1
.

b) If 2a = 2r−2 and x∗(α2k−1−2) = τ 2r−2⊗τ 2k−1−2r
and r+2 ≤ k ≤ d−1,

then
x∗(α2k−2) = τ 2r−2 ⊗ τ 2k−2r

.
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First we assume 4 ≤ k ≤ d− 1 and x∗(α2k−1−2) = 0 and prove a). Let

x∗(α2k−2) =
t∑

i=s

ρiτ
i ⊗ τ (2k−2)−i,

where

s = max{1, (2k − 2)− 2b},
t = min{2k − 3, 2a},

ρi ∈ Z/2Z.

Since Sq1(x∗(α2k−2)) = x∗(Sq1α2k−2) = 0, we have that

Sq1(
t∑

i=s

ρiτ
i ⊗ τ (2k−2)−i)

=
∑

s≤i≤t, i: odd
ρi(τ

i+1 ⊗ τ (2k−2)−i + τ i ⊗ τ (2k−2)−i+1)

=
∑

s≤i≤t, i: odd
ρi(τ

i ⊗ τ (2k−2)−i+1) +
∑

s+1≤i≤t+1, i: even
ρi−1(τ

i ⊗ τ (2k−2)−i+1)

= 0.

Here, τ i ⊗ τ (2k−2)−i+1 6= 0 for s + 1 ≤ i ≤ t. Therefore

ρi = 0 for i : odd, s ≤ i ≤ t. (5)

Next we use Sq2. By (5) we can set

x∗(α2k−2) =
t′∑

i=s′
ρ2iτ

2i ⊗ τ (2k−2)−2i,

where s′ = max{1, 2k − 2

2
− b}

t′ = min{2k − 4

2
, a}.

Since

Sq2x∗(α2k−2) = x∗(Sq2α2k−2)

= x∗(α2k)

= x∗(α2k−1

2 )

= 0,
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we have

Sq2
( t′∑

i=s′
ρ2iτ

2i ⊗ τ (2k−2)−2i
)

=
∑

s′≤2j≤t′
ρ4jSq2(τ 4j ⊗ τ (2k−2)−4j) +

∑

s′≤2j−1≤t′
ρ4j−2Sq2(τ 4j−2 ⊗ τ (2k−2)−4j+2)

=
∑

s′≤2j≤t′
ρ4jτ

4j ⊗ τ 2k−4j +
∑

s′≤2j−1≤t′
ρ4j−2τ

4j ⊗ τ 2k−4j = 0 (6)

Here τ 4j ⊗ τ 2k−4j 6= 0 for s′ + 1 ≤ 2j ≤ t′. Thus

ρ4j = ρ4j−2 for s′ + 1 ≤ 2j ≤ t′. (7)

Next we consider Sq4. Since

Sq4x∗(α2k−2) = x∗(Sq4α2k−2)

= x∗(α2k+2)

= x∗(Sq2k−1

Sq4α2k−1−2)

= Sq2k−1

Sq4x∗(α2k−1−2)

= 0,

we have that

Sq4
( t′∑

i=s′
ρ2iτ

2i ⊗ τ (2k−2)−2i
)

= Sq4
( ∑

s′≤4j≤t′
ρ8jτ

8j ⊗ τ (2k−2)−8j +
∑

s′≤4j−1≤t′
ρ8j−2τ

8j−2 ⊗ τ (2k−2)−8j+2

+
∑

s′≤4j−2≤t′
ρ8j−4τ

8j−4 ⊗ τ (2k−2)−8j+4 +
∑

s′≤4j+1≤t′
ρ8j+2τ

8j+2 ⊗ τ (2k−2)−8j−2
)

=
∑

s′≤4j≤t′
ρ8jτ

8j ⊗ τ 2k+2−8j +
∑

s′≤4j−1≤t′
ρ8j−2τ

8j+2 ⊗ τ 2k−8j

+
∑

s′≤4j−2≤t′
ρ8j−4τ

8j ⊗ τ 2k+2−8j +
∑

s′≤4j+1≤t′
ρ8j+2τ

8j+2 ⊗ τ 2k−8j

= 0.

(8)

13



Thus {
ρ8j = ρ8j−4 for s′ + 2 ≤ 4j ≤ t′

ρ8j−2 = ρ8j+2 for s′ + 1 ≤ 4j ≤ t′ − 1
(9)

We set A as the set {i ∈ N |s′ ≤ i ≤ t′}. (7) and (9) mean that

2i, 2i− 1 ∈ A then ρ4i−2 = ρ4i, (10)

4i, 4i− 2 ∈ A then ρ8i = ρ8i−4, (11)

4i− 1, 4i + 1 ∈ A then ρ8i−2 = ρ8i+2. (12)

Therefore, for i ∈ A − {s′, t′ − 1, t′}, ρ2i = ρ2i+2. The reason is this: if i
is odd, it is trivial from (10); if i = 4j for some j, ρ8j = ρ8j−2 = ρ8j+2; if
i = 4j − 2 for some j, ρ8j−4 = ρ8j = ρ8j−2.

We obtain that
ρ2s′+2 = ρ2s′+4 = · · · = ρ2t′−2.

Also, we see

2b ≥ a + b > 2d−1 and
2k − 2

2
− b ≤ 2d−1 − 2

2
− 2d−2 < 1 (13)

and we have

s′ = max{1, 2k − 2

2
− b} = 1.

We see again (8) and look into the term of τ 2 ⊗ τ 2k
, then we have that

ρ2 = 0 and from (10) ρ2 = ρ4. Hence we have

0 = ρ2 = ρ4 = · · · = ρ2t′−2,

that is,
x∗(α2k−2) = ρ2t′τ

2t′ ⊗ τ (2k−2)−2t′ . (14)

If 2a ≥ 2k − 4 then we have

t′ = min{2k − 4

2
, a} = 2k−1 − 2

and from (10)
ρ2t′−2 = ρ2t′ ,

that is ,
x∗(α2k−2) = 0.
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Therefore we can assume
2a < 2k − 4, (15)

that is, t′ = a. Here if 2a = 2k−1−2, then by (14) x∗(α2k−2) = τ 2k−1−2 ⊗ τ 2k−1
or 0

as asserted. Hence what we have to prove prove is that if 2a 6= 2k−1− 2 then
ρ2t′ = 0.

We set p(2a) so that 2p(2a) is the greatest power of 2 which devides 2a+2.
Let p := p(2a). We remark that p ≤ k − 2 since, if it were not, by (15)

2a = 2k−1 − 2. Using Sq2p

, we see

Sq2p

x∗(α2k−2) = x∗(α2k+2p−2)

= Sq2k−1

Sq2p

x∗(α2k−1−2)

= 0.

Thus it follows that

Sq2p

(ρ2t′τ
2a ⊗ τ (2k−2)−2a) = ρ2t′τ

2a ⊗ Sq2p

τ 2k−2−2a

= ρ2t′τ
2a ⊗ τ 2k+2p−2−2a

= 0

Here τ 2a ⊗ τ 2k+2p−2−2a 6= 0 since by (3) and (4)

2b > 2d − 2a

≥ 2 · 2k − 2a

> 2k + 2p − 2− 2a. (16)

Thus ρ2t′ = 0, that is, x∗(α2k−2) = 0 as asserted.
Next we shall prove b). Let x∗(α2k−1−2) = τ 2r−2 ⊗ τ 2k−1−2r

, r + 2 ≤ k ≤
d− 1 and 2a = 2r − 2. Then

Sqix∗(α2k−1−2) = τ 2r−2 ⊗ Sqi(τ 2k−1−2r

)

=
(

2k−1−2r

i

)
τ 2r−2 ⊗ τ 2k−1−2r+i.

Here we remark that r ≥ 2. For, if r = 2, by a) x∗(α2i−2) = 0 for
3 ≤ i ≤ d− 1. Thus Sq4x∗(α2k−1−2) = 0 and we obtain

Sq1(x∗(α2k−2)) = x∗(Sq1α2k−2) = 0,

Sq2(x∗(α2k−2)) = x∗(α2k−1

2 ) = 0,

Sq4(x∗(α2k−2)) = Sq2k−1

Sq4x∗(α2k−1−2) = 0.

15



Then it follows from the previous argument in a) that

x∗(α2k−2) = ρτ 2r−2 ⊗ τ 2k−2r
,

where ρ ∈ Z/2Z.
Next using Sq2r

, we have

Sq2r

x∗(α2k−2) = ρSq2r

(τ 2r−2 ⊗ τ 2k−2r
)

= ρτ 2r−2 ⊗ τ 2k
,

while

Sq2r

x∗(α2k−2) = x∗(α2k+2r−2)

= x∗(Sq2k−1

Sq2r

α2k−1−2)

= Sq2k−1

Sq2r

x∗(α2k−1−2)

= τ 2r−2 ⊗ τ 2k
.

Here τ 2r−2 ⊗ τ 2k 6= 0 since

2a = 2r − 2

2b = 2(a + b)− 2a

> 2d − 2r + 2

≥ 2d−1

≥ 2k. (17)

Therefore ρ = 1 and

x∗(α2k−2) = τ 2r−2 ⊗ τ 2k−2r
.

Thus lemma 4.11 is proved.
In the case I) if x∗(α6) = 0 then x∗(α2(a+b)) = 0. Proof. By Lemma 4.11

x∗(α2d−1−2) = 0

or
2a = 2r − 2 and x∗(α2d−1−2) = τ 2r−2 ⊗ τ 2d−1−2r

.

Since
x∗(α2(a+b)) = Sq2d−1

Sq2(a+b)−(2d−2)x∗(α2d−1−2),
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if x∗(α2(a+b)) 6= 0 then x∗(α2d−1−2) 6= 0 and 2(a + b) ≡ −2 mod 2r. But if
2(a + b) ≡ −2 mod 2r then

(
2(a+b)

2a

)
=

(
2(a+b)
2r−2

)
≡ 1 mod 2.

Thus if
(

2(a+b)
2a

)
≡ 0 mod 2 and x∗(α6) = 0 then

x∗(α2(a+b)) = 0.

Q.E.D.

Now we consider the case II) we start from the next lemma. Assume
i + j = 2d − 2 for some d ∈ N, d > 3, i and j are even, i, j ≥ 2 and

i =
d−1∑

k=1

εk2
k,

where εk = 0 or 1. Then

Sq2p

τ i ⊗ τ j =

{
τ i+2p ⊗ τ j εp = 1
τ i ⊗ τ j+2p

εp = 0

for 1 ≤ p ≤ d − 1 where τ i ⊗ τ j ∈ H2d−2(RP∞ ∧ RP∞). Proof. We use
induction. Let εk = 1− εk. Then j =

∑d−1
k=1 εk2

k.
The statement is true for p = 1. Let we assume that the statement is

true for Sq2p−1

and also εp−1 = 1. Then

Sq2p−1

τ i ⊗ τ j =
2p−1∑

l=0

(Sqlτ i)⊗ (Sq2p−1−lτ j)

=
2p−1∑

l=0

(
i
l

)(
j

2p−1−l

)
τ i+l ⊗ τ j+2p−1−l

= τ i+2p−1 ⊗ τ j,

that is, (
i
l

)(
j

2p−1−l

)
=

{
0 0 ≤ l ≤ 2p−1 − 1
1 l = 2p−1.

17



Hence

Sq2p

τ i ⊗ τ j =
2p∑

l=0

(
i
l

)(
j

2p−l

)
τ i+l ⊗ τ j+2p−l

=
2p−1∑

l=0

(
i
l

)(
j

2p−l

)
τ i+l ⊗ τ j+2p−l +

2p−1∑

l=0

(
i

2p−1+l

)(
j

2p−1−l

)
τ i+2p−1+l ⊗ τ j+2p−1−l

=
2p−1∑

l=1

(
i
l

)(
εp−1

1

)(
j

2p−1−l

)
τ i+l ⊗ τ j+2p−l

+
2p−1−1∑

l=0

(
εp−1

1

)(
i
l

)(
j

2p−1−l

)
τ i+2p−1+l ⊗ τ j+2p−1−l

+
(

j
2p

)
τ i ⊗ τ j+2p

+
(

i
2p

)
τ i+2p ⊗ τ j

=
(

ε̄p

1

)
τ i ⊗ τ j+2p

+
(

εp

1

)
τ i+2p ⊗ τ j

as asserted. And even if εp−1 = 1, it can be proved in the same manner.

Q.E.D.

Let b ≥ a. In the case II), if x∗(α6) = 0, then

x∗(α2d−2) =





ρ
∑(2d−4)/2

i=1 τ 2i ⊗ τ (2d−2)−2i + ρ′τ 2d−1−2 ⊗ τ 2d−1

where 2a = 2d−1 − 2 if ρ′ = 1
or
τ 2r−2 ⊗ τ 2d−2r

and 2a = 2r − 2, 3 ≤ r ≤ d− 2.

Proof. We start from the computation of x∗(α2d−1−2). By lemma 4.11

x∗(α2d−1−2) =





0
or
τ 2r−2 ⊗ τ 2d−1−2r

in this case 2a = 2r − 2, 3 ≤ r ≤ d− 1.

Next we consider x∗(α2d−2). Since

Sq1(x∗(α2d−2)) = x∗(Sq1α2d−2) = 0, (18)

Sq2(x∗(α2d−2)) = x∗(α2d−1

2 ) = 0, (19)

Sq4(x∗(α2d−2)) = Sq2d−1

Sq4x∗(α2d−1−2) = 0, (20)
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as in the proof of Lemma 4.11, we have

x∗(α2d−2) = ρτ 2s ⊗ τ (2d−2)−2s + ρ′
t−1∑

i=s+1

τ 2i ⊗ τ (2d−2)−2i + ρ′′τ 2t ⊗ τ (2d−2)−2t,

where

s = max{1, 2d − 2

2
− b},

t = min{2d − 4

2
, a}.

Firstly we assume x∗(α2d−1−2) = 0. And we shall prove ρ = ρ′. If s = 1
then the equation Sq2x∗(α2d−2) = 0 means ρ = ρ′. Thus we assume s =
2d−2

2
− b, that is,

2b ≤ 2d − 4. (21)

Here we remark that by (4),

2b ≥ a + b (22)

> 2d−1 − 2 (23)

Let q := p(2b) then (21) and (23) mean q ≤ d− 2. Also

Sq2q

x∗(α2d−2) = Sq2d−1

Sq2q

x∗(α2d−1−2) = 0.

Thus, by Lemma 4.13, compare the term of τ (2d−2)−2b+2q ⊗ τ 2b in Sq2q

x∗(α2d−2)
and we obtain

(ρ + ρ′)τ (2d−2)−2b+2q ⊗ τ 2b = 0. (24)

Here we remark that (2d−2)−2b+2q ≤ 2a by (4). Thus (24) means ρ′ = ρ′′.
Therefore

x∗(α2d−2) = ρ′
t−1∑

i=s

τ 2i ⊗ τ (2d−2)−2i + ρ′′τ 2t ⊗ τ (2d−2)−2t.

Next we consider the term ρ′′τ 2t ⊗ τ (2d−2)−2t. If 2t = 2d − 4, then by the
computation of Sq2x∗(α2d−2) we have ρ′ = ρ′′ and x∗(α2d−2) =

∑t
i=s τ 2i ⊗ τ (2d−2)−2i

or 0 as asserted. Thus we assume 2t = 2a, that is,

2a < 2d − 4 (25)
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Let p := p(2a). Here from (25) p ≤ d − 1. And p = d − 1 if and only if
2a = 2d−1 − 2.

If 2a = 2d−1 − 2 then

x∗(α2d−2) = ρ′
(2d−4)/2∑

i=1

τ 2i ⊗ τ (2d−2)−2i + (ρ′′ + ρ′)τ 2d−1−2 ⊗ τ 2d−1
.

If p ≤ d− 2 then

Sq2p

x∗(α2d−2) = Sq2d−1

Sq2p

x∗(α2d−1−2) = 0. (26)

By Lemma 4.13 look into the term of τ 2a ⊗ τ (2d−2)−2a+2p
of (26) and we obtain

(ρ′ + ρ′′)τ 2a ⊗ τ (2d−2)−2a+2p
= 0. (27)

Remark that by (4)
(2d − 2)− 2a + 2p ≤ 2b.

Therefore ρ′ = ρ′′ and

x∗(α2d−2) = ρ′
t∑

i=s

τ 2i ⊗ τ (2d−2)−2i.

Secondly we assume x∗(α2d−1−2) = τ 2r−2 ⊗ τ 2d−1−2r
and 2a = 2r − 2 and

observe x∗(α2d−2) again. We reset

x∗(α2d−2) = ρτ 2s ⊗ τ (2d−2)−2s + ρ′
t−1∑

i=s+1

τ 2i ⊗ τ (2d−2)−2i + ρ′′τ 2t ⊗ τ (2d−2)−2t,

where

s = max{1, 2d − 2

2
− b},

t = min{2d − 4

2
, a}.

Then

2b = 2(a + b)− 2a (28)

≥ (3 · 2d−1 − 2)− (2d−1 − 2) (29)

= 2d (30)
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This means s = 1. Thus by the computation of Sq2x∗(α2d−2) we have

ρ = ρ′

and also by the computation of Sq4x∗(α2d−2) and by (30) we have

ρ = 0.

Therefore we obtain

x∗(α2d−2) = ρ′′τ 2r−2 ⊗ τ 2d−2r
.

Finally we have obtained the following result

x∗(α2d−2) =





ρ
∑(2d−4)/2

i=1 τ 2i ⊗ τ (2d−2)−2i + ρ′τ 2d−1−2 ⊗ τ 2d−1

where 2a = 2d−1 − 2 if ρ′ = 1
or
τ 2r−2 ⊗ τ 2d−2r

and 2a = 2r − 2, 3 ≤ r ≤ d− 2.

Q.E.D.

In the case II) if x∗(α6) = 0 then x∗(α2(a+b)) = 0.
Proof. By (4)

x∗(α2(a+b)) = Sq2(a+b)−(2d−2)x∗(α2d−2).

And by Lemma 4.14 we shall prove that




Sq2(a+b)−(2d−2)
(∑(2d−4)/2

i=1 τ 2i ⊗ τ (2d−2)−2i
)

= 0

Sq2(a+b)−(2d−2)(τ 2r−2 ⊗ τ 2d−2r
) = 0 in case a = 2r − 2, 3 ≤ r ≤ d− 1.

Since
(2d−4)/2∑

i=1

τ 2i ⊗ τ (2d−2)−2i = x∗0(α2d−2),

it follows that

Sq2(a+b)−(2d−2)
((2d−4)/2∑

i=1

τ 2i ⊗ τ (2d−2)−2i
)

= Sq2(a+b)−(2d−2)x∗0(α2d−2)

= x∗0(α2(a+b))

=
(

2(a+b)
2a

)
τ 2a ⊗ τ 2b

= 0.
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Also

Sq2(a+b)−(2d−2)(τ 2r−2 ⊗ τ 2d−2r
)

= τ 2r−2 ⊗
(

2d−2r

2(a+b)−(2d−2)

)
τ 2(a+b)−(2d−2)

=
{

τ 2r−2 ⊗ τ 2(a+b)−(2r−2) if 2(a + b) ≡ −2 mod 2r

0 otherwise

But if 2(a + b) ≡ −2 mod 2r then
(

2(a+b)
2a

)
=

(
2(a+b)
2r−2

)
≡ 1 mod 2.

Thus if
(

2(a+b)
2a

)
≡ 0 mod 2 then x∗(α2(a+b)) = 0.

Q.E.D.

Now we shall finish the proof of Theorem 4.7. Let x : RPn−1∧RPm−1 →
Ω0SO be an arbitrary map, n > 1, m > 1 and

(
n+m−2

n−1

)
≡ 0 mod 2. If

x∗(α6) = 0 then by Lemma 4.12, Lemma 4.15 we obtain x∗(αn+m−2) = 0.
Therefore we assume x∗(α6) 6= 0. Then from Lemma 4.9

x∗(α6) = τ 2 ⊗ τ 4 + τ 4 ⊗ τ 2.

Let x + x0 : RPn−1 ∧RPm−1 → Ω0SO be a map which is contained in the
homotopy class [x] + [x0]. Since Ω0SO is an H-space and it is known that
α2i ∈ H∗(Ω0SO) are primitive elements,

(x + x0)
∗(α6) = 2(τ 2 ⊗ τ 4 + τ 4 ⊗ τ 2) = 0.

Therefore
(x + x0)

∗(αn+m−2) = 0,

while

(x + x0)
∗(αn+m−2) = x∗(αn+m−2) + x∗0(αn+m−2)

= x∗(αn+m−2) +
(

n+m−2
n−1

)
τn−1 ⊗ τm−1

= x∗(αn+m−2).

Finally we obtained that x∗(αn+m−2) = 0 and Theorem 4.7 is proved.

Hiroaki HAMANAKA
Department of Mathematics, Kyoto University
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