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1 Introduction

Assume G is a topological group and S, S” are subspaces of G, each of which
contains the unit as its base point. There is the commutator map ¢ from
S A S’ to G which maps (z,y) € SA S to zyz~ly™' € G. We say S and 5’
homotopy-commute in G if ¢ is null homotopic.

In this paper, we describe the homotopy-commutativity of the case G =
SO(n+m—1), S =50(n) and S" = SO(m) where n,m > 1. Here we use
the usual embeddings

SO(1) C SO(2) c SOB3) C ---.

Trivially SO(n) and SO(m) homotopy-commute in SO(n +m). And it is
known that if n +m > 4, SO(n) and SO(m) do not homotopy-commute
in SO(n+m —2). (See [1] and [2].) But the homotopy-commutativity in
SO(n +m — 1) has not been solved exactly.

We shall say a pair (n,m) is irregular if SO(n) and SO(m) homotopy-
commute in SO(n +m — 1), and regular if they do not. In [1] the following
problem is proposed; "when is (n,m) irregular?”, and the next theorem is
showed.

(James and Thomas) Let n+m # 4,8. If n or m is even or if d(n) = d(m)
then (n,m) is regular, where d(q), for ¢ > 2, denotes the greatest power of 2
which devides ¢ — 1.



In this paper we shall prove the more strict result as showed in the next
theorem.
If n or m is even or if ("Z’fl_ 2

We identify RP*! & SO(k) by the following way. Let ¢}, : RP*! —
O(k) be the map which attatches a line | € RP*~! with #}.(I) € O(k) defined
by

) = 0 mod 2 then (n,m) is regular.

i.(D)(v) = v —2(v, e)e,

where e is a unit vector of [ and v € R¥. And let i (1) = #}(I) " - i, (1) where
ly is the base point of RP*~1. Then i), preserves the base points.

Theorem 1.2 follows from the next theorem.

Let n and m be odd. RP"™! € SO(n) and RP™' C SO(m) homotopy-
commute in SO(n +m — 1) if and only if

<”+m72> = 1 mod 2.

n—1

Let SO be lim_,(SO(1) € SO(2) € SO(3) C ---) and consider the
fibration SO(n+m —1) — SO — SO/SO(n+ m —1). Then we have a
sequence of spaces

.- 0S0 X (SO/SO(n+m—1)) % SO(n+m —1) - SO & 8S0/50(n +m — 1).

We can see i o C|RP"_1/\RPm_1 ~ % :RP" ' ARP™ ! — SO. This means

there exists A : RP" ' ARP™ ' — QSO/SO(n +m — 1) such that §o \ =
C|RP”’1/\ pr-1- The construction of A and the cohomology map A\* are
argued in %:5 We describe about lifts of A in §3 and finally, in §4, we determine
when a lift of A exists, which means when C|RP"_1/\RPm_1 o k.

2 Lift A of c
Definition A sequence of spaces X; and continuous maps f;
s Xim B X, - B X

is called a fibration sequence if, for any ¢ > 0, there exists a fibration Yi(2) EIN
Y I v homotopy equivalence maps ¢ 1 X;p — ;%) (k =0,1,2), and
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the following diagram commutes upto homotopy.
Xio W X & X,

~| g ~| ~| ¥
Y;(Q) ﬁ) Y;(l) i Y(O)

7

For example, given a fibration F' — E — B, there is a fibration sequence
= QF - QF - QB —- F —- FE — B.

Consider the fibration SO — SO/SO(n + m — 1) with the fibre SO(n +m — 1).
Then we have a fibration sequence.

- > 080 £ Q(80/S0(n+m —1)) > SO +m—1) 5 SO 2 SO/SO(n +m — 1)

Obviouly i o ¢ : SO(n) A SO(m) — SO is null homotopic. This means there
exists a lift of ¢, that is, amap A : RP" 'ARP™ ! — Q(SO/SO(n +m — 1))
such that d o A ~ c.

In R.Bott[3] it is showed that the following map Ao : SO(n) A SO(m) —
Q(SO/SO(n+m —1)) is a lift of c.

Recall the fibration SO(k —1) — SO(k) %5 S*=1. Define h as h =
Y (pn A pm) : (SO(n) ASO(m)) — S(S" A S™) ~ §nFm=1 Then adh is
a lift of ¢ in the following fibration sequence. (See [5].)

= QS0(n+m)— Qs+m1 - SOn+m-1) — SO(n+m)— Svrm-t
. adh Tc
SO(n) A SO(m)
The fibration SO(n +m) — S™*"~! is the restriction of SO — SO/SO(n +m — 1)

to S"m=L = SO(n +m)/SO(n +m —1) < SO/SO(n + m — 1). Therefore
we define Ay as €27 o adh. Refer to the commutative diagram below.

The rest of this section is devoted to the computation of the cohomology
map of X\. And throughout this paper we use Z/2Z as the coefficient ring of
cohomology unless mentioned.

First we refer to the cohomology rings of spaces which are used in this
paper, that is,

H*(©,S0O) Z/2Z ]y, oy, 0, - -]/ (o — a2)),
H*(Q(SO/SO(n+m —1))) = Z/2Z[}, 5 Wiy ]/ (0 — ),
H*(SO(k)) = A(x1, - 2k-1),
H*(SO(k)/SO(k 1)) = A@i_y, - 1),
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Q2SO

Qp
Qgntm=1 L Q(‘SO/SO(n +m —1))
adh/ d
SO(n) ASO(m) — SO'(n—i-m—l) — SO‘(n+m—1)
| @-
RP" ' ARP™! SO'(n +m) éo
p
gt — e $0/50(n +m 1)



where deg(aw;) = 2i, deg(ah,;) = 2i, deg(x;) = i. And also
Qp* () = ay.

Ao (A o) = Tpo1 @ Ty—1. Proof. Consider the fibration p, : SO(k) —
Sk=1 with the fibre SO(k —1). Let ¢; be the generator of H'(S?). Then
pi(ck—1) = xx_1. Thus we have

h*(cn+m—1) - E(pn /\pm)*(zcn—l X Cm—l)
= Z:(*/Ijnfl ® $m71>-

Hence (adh)*(0¢pim—1) = Tp_1®xpy,_1, where o is the cohomology suspension
o: H*(X) — H*(QX).

On the other hand, j*(x,1m_1) = Chim_1 Mmeans

() (O‘;L+m—2) = ()" (UI;Ler—l)

= O0Cptm—1-

Therefore it follows that
Ao(@nim—2) = (adh)" ()" (a4 pms)
= Tp-1 @ Tm-1.
Q.E.D.
Now let A = Xg o (i, Ady) : RP"FARP™ ! — Q(SO/SO(n +m — 1))
and in the following we use ¢ as the commutator map from RP" " 'ARP™ ! to

SO(n +m — 1). Easily we have i} (z;_1) = 7%~! where 7 means the generator
of HY(RP*™). (See Whitehead [4].) Thus
Aoy ) = (im Ain)" 0 A5 (Qpym)

n+m—2
P 1 ® T 1 .

3 Lift of A and homotopy commutativity

In this section we prove the next theorem.
Let n, m be odd.



1. ¢~ x if and only if there exists a lift of ), that is, a map = : RP™™' A
RP™ ! — Q(SO) such that A = Qpo x.

2. ¢ ~ % if and only if there exists x : RP"' ARP™ ! — (SO) such
that 2*(pym—2) ~ 7" 1 @ 7™~ L,

Proof. 1. The sequence
- 2(S0)EQ(SO/SO(n +m — 1))5S0(n +m — 1)

is a fibration sequence and A is a lift of ¢. Therefore the statement follows.
2. By the first statement it is sufficient to prove that x is a lift of A if and
only if 2*(yim-_2) = 71 @ 7™~ 1. We need the following lemma.
Let n and m be odd. Then

0 1<n+m-—2

m(SO/SO(n+m —1)) = {z/zz i=n+m-—1

Proof. Consider the fibration
SOn+m+1)/SO(n+m—1) —SO/SO(n+m —1) — SO/SO(n+m+1)

and see the homotopy exact sequence. Remark that m;(SO/SO(2k +1)) =0
for 1 < 2k and we obtain

Tnim-1(8SO/SO(n+m — 1)) = Tpym-1(SO(n+m+1)/SO(n +m — 1)).

It is known that 7m,4m—1(SO(n+m+1)/SO(n+ m — 1)) = Z/2Z provided
n+m — 1 is odd. Hence we obtained the statement.

Q.E.D.

By Lemma 3.6 it follows that

0 1<n+m-—3

m(Q(SO/S0(n +m —1))) = {Z/QZ i=n+m-—2.

Now add cells e;(7 > 1) to Q(SO/SO(n + m — 1)) so that 7, (2(SO/SO(n +m — 1))

vanishes for &k > n+m — 1, where dime; > n+m. We shall call the obtained
space K, that is,

Q(SO/SO(n+m—1)) — QSO/SO(n+m—1))Ue;UeyU--- =K (1)
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and .
0 otherwise.

Thus K is an Eilenberg-Maclane space K(Z/2Z;n + m — 2). Let v denote
the inclusion map from Q2(SO/SO(n+ m — 1)) to K. Here

Vet Tntm—2(Q2(8O/SO(n+m —1))) = Tpim—2(K)
is not a 0-map. This means that by the isomorphism
[Q(SO/SO(n+m — 1)), K] =2 H"""2(Q(SO/SO(n + m — 1)))

7 corresponds to o, ., o, that is, v*u = a;,,,,_, where u is the generator of
Hm2(K).

On the other hand, (1) and (2) imply that v, : m;(2(SO/SO(n +m — 2))) —
m;(K) is isomorphic for i < n + m — 2 and epic for i > n + m — 1. Then by
Whitehead’s theorem

[RP" ' ARP™ ! Q(SO/SO(n+m—1))] = [RP"'ARP" ' K]
o~ Hn+m—2(RPn—1 /\RPm_l).
Thus maps f and g : RP" ' ARP™ ! — Q(SO/SO(n + m — 2)) are homo-
topic if and only if f*(o,,,_o) = 9" ()1 m_o)-
Now we assume z : RP"' ARP™ ! — Q(SO/SO(n +m — 1)) satisfies
that 2*(pim-_2) = 7' @ 7™ 1. Then

(o) (yppy) =T @ T,

By §2 X\ (a), o) = 7" '@ 7™!. Thus we obtain Qpox ~ X and z is a lift
of A.
The inverse is trivial and the proof of theorem 3.5 is finished.

4 Existence of lift of )\

In this section we prove the next theorem which completes the proof of The-
orem 1.3. Let n and m be odd. There exists a map z : RP" ' ARP™ ! —
Q0(SO) such that z*(apim_2) = 7" @ 7™~ if and only if

<”+m72> = 1 mod 2.

n—1
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Proof. First consider
0:=(r, —1)®(r; — 1)&(res — 1)®(ree — 1) € KO(Z*(RP® A RP%)).
Here r; is the M&bius line bundle over S' and r., is the canonical line bundle

over RP*. Now we compute the total Stiefel Whitney class of 6. We start
from the next lemma.

Let A = 1+a;+ay+--- € H*(RP® xRP*) where a; € H(RP>* xRP>)
and let s; € H*(S! x St x RP™ x RP*) (i = 1,2) be the pull back of the
generator of H!(S!) by the canonical projection from S x S x RP* x RP*
to the ith factor S'. Then we have

(A —+ 51 + 82)14 o A2 + 8189

€ H*(S! x St x RP™ x RP™).

(A+s1)(A+sy) A2
Proof. By direct computation, we see
(A+s1+s2)A {(A+s1)°+(A+s1)s}A
(A+s)(A+ss) (A+51)*(A+ s2)
B (A% + 59A + 5189)A
B A%2(A + s9)
A(A + 52)% 4 (A + s9) 5152
A(A+ s9)?
A 458
= e

Q.ED.
Let 7 : ST x ST x RP® x RP™ — Y2(RP* A RP™) be the canonical

projection and decompose 7*6 as

T = 7 XTI XToo XTooT I X1 XTog XToo—1 X7 XTog XToo—7T1 X1 X7Isg X Teo
— T XTI X I X 71 =1 XTI XIXre+1Xr X1X7reo4+1r X1X1 X7y
— TP XTI X T X 1T =1 XTI X7 oo XT+1X7r XrgeX14+r X1IXr,xl1
+riXry X1Ix14+1x1Xx1x1—-1xrxXx1x1l—r x1x1xlIl.

Then the total Stiefel Whitney class w(7*0) of 7%0 is given by

(I4+71+70+s1+s2)(1+71+72)  (1+51+82)

(1+7‘1+7‘2+31)(1+7'1+72+32).(1—1—31)(1%—32)

(I+714+s1+s2)(1+71) (I14+724+ 51+ 82)(1+72)) ¢

'{(1+rl+sl)(1+n+32)'(1+72+sl)(1+72+52)} '

w(r*d) =
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Here 7; (i = 1,2) is the pull back of the generator of the cohomology ring of
the ith factor of RP* x RP*. By the previous lemma, we obtain

1+7’f+7§+3152 1+7‘%+8182 1 1+7’%+3152 1
0) = (1 (LT TN
w(m"0) 1+72+73 (1+s152) - ( 1+72 ) ( 1+ 73 )
= {1+ @+ 77+ 73) sisob (L4 siso) {1+ (1 +77) siso {1+ (1 4+ 73) 's152}

= Ttsis{(l+m+3) " + 1+ 0+ + (147571

= 1+ 5132{2(7? +73) + 14 ir? + 273}
- Lan{3 ()
Therefore we see
w(O) =14 {35 ()% o ),

Let f be the classifing map of 6, that is, the map
f: 2*(RP> ARP*) — BSO

such that f*(§) = 6 where £ = lim,,_,(§, —n) and &, is the universal SO(n)
vector bundle over BSO(n).

It is known that H*(BSO) = Z/2Z[w;, wy, - - -] where w; is the ith Stiefel
Whitney class. Let ¢, : RP¥ — RP* be the inclusion map and let

zo := (ad®f) 0 (ty_1 A tm—1) : RP" P ARP™ ! — QSO.
Then it follows that for N > 1

zh(oon) = (tne1 Atme1)(ad? f) 0% wan o
N-1
= i h o (3 () g o),
=1
Particularly xf(c,m_2) = (”+m_2)7”_1 ® 7™~ Thus if (”+m_2) =1 then

n—1 n—1

there exists 7o : RP"' A RP™ " — QSO such that z}(a,qm_2) = 7' ®
rml



then 2*(aym_2) = 0 for any z : RP*"' ARP™ ' — QSO. Let n = 2a + 1,
m = 2b+ 1 where a,b € Z, a,b > 1. Moreover we set a < b.

Here we use the Steenrod’s square operators Sq'. In H*(£2,S0), Sq' acts
as follows

Now we shall prove the inverse, that is, prove that if (””;ml_ 2) = 0 mod 2

. 2j+1 -
qu o) = { ( i )Oégj+i 7 1S even
() 0 7 is odd.
Let z : RP?* ARP?% — ,SO be an arbitrary map.
We set a, b, x as above then

r*(ay) =0 and 2" (o) = * @7 + @ 72 o1 0.

Proof. Since 7*(ay) € H*(RP* ARP?), 2*(ay) = 7®7 or 0. If 2*(ay) =
T ® 7, then we have
Sq'r* () =T* T+ TR T
On the other hand,
Sq'z*(ag) = 2*(Sq'ay) = 0.

Therefore 2*(ay) = 0.
Next we consider z*(ag). If (a,b) = (1,1) then 2*(ag) = 0, and if (a,b) =
(1,2) we can see r*(ag) = 72 ® 74 or 0 as asserted. And otherwise, set

' (a6) =T R T + e @ T+ @ 70+ part @ 7 4 s’ @ T,
where p; € Z/27Z and the statement follows the next two equations.
Sq'z*(ag) = 2*(Sq'ag) = 0
Sq%a (ag) = o*(as) = 7*(a)* = 0
Q.E.D.

Remark that if 2(a +b) = 2¢ — 2 for some d € N, then (2(‘12?1’)) =1 mod 2

for any i € Z such that 0 <i < a+b. And also when 2(a + b) = 2¢ for some
d e N,

(2(a+b)) _ {1 mod2 i=0ora+b
2 0 mod 2 otherwise.
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In this case

z(Qogary) = 7 (ag)
= x"(a power of ay)
0

as asserted. Hence we can assume that 2(a+b) # 2% or 28 —2 for any k € N.
Next we shall prove the next theorem. Let a,b and x be as above. If
r*(ag) = 0 then 2*(ag@4s)) = 0. Proof. Let d be the number which satisfies

27 < 2(a+0b) <2 —2 deN.(d>3)
We distinguish between the following two cases.

D)
29 <2(a+b) <3297t -2 (3)

II)
3-2971 —2<2(a+b) <27 -2 (4)

Let a,b and z be as above. In any of the case I) and II), if 2*(ag) = 0
then one of the following holds.

i) 2*(agr_g) =0for3<k <d-—1.
ii) 2a =2" —2 for some r € N, r <d—1 and

) 0 3<k<r
x (a2k_2) = 7272 ®7_2’“—2r r+1<k<d-—1.

Proof. We use induction, that is, we prove the next two propositions.

a) If *(agr-1_9) =0 and 4 < k < d — 1, then one of the followings holds.

o *(agr_y) =0.

o 20 =21 —2and 2*(ag_o) =72 2@

b) If 2a = 2" — 2 and z*(qgr-1_4) = 2202 Y and r4+2 < k < d—1,
then

3:*(0421672) = 7—2T_2 & 7—2k_2r.
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First we assume 4 < k < d — 1 and x*(agr-1_) = 0 and prove a). Let

where
s = max{l, (2" —2) — 20},
t = min{2" — 3, 2a},
pi € Z/2Z.
Since Sq* (z*(aar_s)) = 2*(Sq aar_) = 0, we have that

t
i k_2)—i
Sql(Zpﬂ' ® 732

_ Z pi<7_i+1 ® T(Qk—Q)—i 7 ® T(2’€—2)—i+1)
s<i<t, i: odd

_ Z pi<7_z’ ® 7_(2]“—2)—1'—1-1) + Z pi71(7'i ® 7_(2’“—2)—1'—1—1)
w<i<t. i odd s+1<i<t+1, i: even
_ 0.
Here, 7' @ 7(2*=2=1 £ () for s + 1 < i < ¢. Therefore
pi=0fori: odd, s <i<t. (5)

Next we use Sq°. By (5) we can set

tl

v (om_g) = 3 por? @ T

2k — 9
where s = max{1, 5 — b}
2k — 4
t'" = min{ ,a}.
2
Since
Sq2x*(a2k,2) = .’E*(Sq2a2k,2)
= ()
= 23 )
0,
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we have

qu(tzl poiTE ® 7_(21672)721')

i=s’

= Y pSP(rY @rTT) 4 3T pyy oS @ r )

(6)

s'<25<t! §/<2j—1<t!
- ki . - ki .
= D TV Y pyatV e Y =0
§1<2j<t! §1<2j—1<t!

Here 749 @ 724 £ ( for &' +1 < 2j < t’. Thus
P45 = Paj—2 for S/ +1 S 2] S t/.

Next we consider Sq*. Since

*

Sq4042k—2)

Qigh 1)
*(Sq2k_18q40z2k—1_2)

= 82 Sq “(agr-1_)
0,

Sq495*(042k—2)

(
x(

we have that

tl

q4<z s 7_(2’“—2)—21')

i=s’

= Sq4< Z ijTsj ® T(Qk_Q)_gj + Z p8j727'8j_2 & 7(

s'<dj<t! s/<dj—1<t/

2k _2)-8j+2

+ Z p8j747_8j—4 ® 7.(2’“—2)—8]‘-1—4 + Z p8j+27_8j+2 ® ,7_(2’“—2)—8]'—2)

s'<d4j—2<t/ s/ <4j+1<t/

_ 8j 2k 4285 8542 2k _g;

= D TV @rT N4 S gV ert Y
s/ <4<t/ §/<4j—1<t/

8j 2k 1285 8j+2 2k _gj
+ Z P8j—4T J X T + J 4 Z P8j+2T 7+ X T J

s'<4j—2<t! 8/ <Aj4+1<t!

= 0.
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Thus
P8; = Pgj—4 for s’ +2 < 4] < t
P8j—2 = P8j+2 for SI + 1 S 4] S t/ —1

We set A as the set {i € N |s' <i <t'}. (7) and (9) mean that

20,21 — 1€ A then pyi_9 = pai, (10)
4i, 41— 2 € A then P8i = P8i—4, (1]_)
47 — 1, 4i+1¢€e A then Pgi—2 = P8i+2- (12)

Therefore, for i € A — {s',t' — 1,t'}, pa; = paire. The reason is this: if i
is odd, it is trivial from (10); if ¢ = 4j for some j, ps; = psj—2 = psjt2; if
t =4j — 2 for some j, pgj_a = ps; = pPsj—2-
We obtain that
P2s'+2 = P2s'+4 =+ = Pay'—2.
Also, we see

E_ d-1 _
-2, 2 2 s

20 > a+b> 29" and <1 (13)

and we have
, ok _ 9
S :maX{l,T —b} = 1

We see again (8) and look into the term of 72 ® 72° | then we have that
p2 = 0 and from (10) py = ps. Hence we have

0=P2=P4="'202t'—2,
that is,
I'*(OCQI@_Q) = p2t/7'2t, & T(Qk_Q)_2t,. (].4:)
If 2a > 2% — 4 then we have

k _
t = min{224, a} =212

and from (10)
P2t —2 = Par,

that is ,
x*(Q2k72> =0.
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Therefore we can assume
2a < 28 — 4, (15)

ok—1

that is, ¢’ = a. Here if 2a = 28"1—2, then by (14) z*(age_o) = 72 2@ 72" or 0
as asserted. Hence what we have to prove prove is that if 2a # 2¥~! — 2 then
p2rr = 0.
We set p(2a) so that 2P(3?) is the greatest power of 2 which devides 2a+ 2.
Let p := p(2a). We remark that p < k — 2 since, if it were not, by (15)
2a = 2F-1 — 2. Using Sq*", we see

SQQP.I'*(O(Qk,Q) = (’E*<Oé2k+2p,2)
2k—1

= Sq Sq2p$*(a2k—1_2)

= 0.
Thus it follows that

SqZP (p2t/7_2a ® T(zk—Z)—2a) — p2t’7_ ® Sq2p 2k_2_2¢q
— th/7_2a ® 7_2 +2P—2—-2a

= 0
Here 72¢ @ 72" +2"~2-20 - () gince by (3) and (4)

2 > 2¢9-2q
> 2.2 _2q
> 2F 4 2P -2 2q. (16)

Thus pay = 0, that is, 2*(agr_5) = 0 as asserted.
Next we shall prove b). Let 2*(agr-1_5) = 7% 2 @ 72
d—1and 2a = 2" — 2. Then

k—1

T r4+2<k<

T k—1_or
2 2®Sq(2 2)

Sq'r*(agr-1_9) = T
k—1 a T k—1_or_,
(2 -2 ) 2"-2 @ 72 27+

Here we remark that » > 2. For, if r = 2, by a) 2*(agi_5) = 0 for
3 <i<d—1. Thus Sq*z*(asr-1_5) = 0 and we obtain

Sq' (z*(agr_s)) = 2*(Sq'agr_s) =0,
2k 1

S¢°(a*(0pn) = @*(ef ) =0,
Sq4($*(042k,2)) = Sq Sq4x*(a2k_172):()‘
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Then it follows from the previous argument in a) that

2r—2 ® Tzk—zT

2" (agi_p) = pT :

where p € Z/27Z.
Next using Sq* , we have

Sq2rx*(a2k72) = qu2T(T2T—2®T2k—2’“)

while
Sq2r.1:*(062k_2> = $*<Oé2k+2r_2)
2" (S Sq? auge-1_y)
= Sq2k718q2rx* (0621671_2)

= 72722
Here 722 ® 72° £ 0 since
20 = 2" =2
2 = 2(a+b)—2a
> 292742
> 2d—1
> 2k (17)

Therefore p = 1 and

.T*(OZQk,Q) = 7-27l_2 X TQk_2r.
Thus lemma 4.11 is proved.
In the case I) if 2*(a) = 0 then 2*(aa(q1s)) = 0. Proof. By Lemma 4.11

x*(QQd—1,2) =0

or

r_ d—1_or
2a = 2" — 2 and z*(ga-1_o) = 72 2 @ 72 2z,
2 2

Since

2d—1 Sq2(a+b)—(2d—2)x*(

x*(a2<a+b)) = Sq Qgi-1_3),
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if @*(aa@ate)) # 0 then *(agi-1_5) # 0 and 2(a + b) = —2 mod 2". But if
2(a+b) = —2 mod 2" then

(2(a+b)) _ (2(a+b)) =1 mod 2.

2a 272
Thus if (2(‘;:6)) = 0 mod 2 and z*(ag) = 0 then

&*(a(aqp)) = 0.
Q.ED.

Now we consider the case II) we start from the next lemma. Assume
i+j=2%—2forsomed €N, d>3,iand j are even, i,j > 2 and

d—1
i=> 2",
k=1

where ¢, = 0 or 1. Then

1+2P J _
» T T =1
for 1 < p < d—1 where 7' ® 77 € H*“2(RP® A RP™). Proof. We use
induction. Let €, =1 — ¢;. Then j = Zi;} &2k,
The staterlnent is true for p = 1. Let we assume that the statement is
true for Sq* and also ¢, ; = 1. Then

op—1

S i = > (S ® (Sq¥ "7y
1=0
or—1

— i J i+l j+2r—1-]
= Z (z) (21}—171)7 QT

. p_l .
— Tl+2 ® 7—.7’

that is, X
; 4 p—1 _
(G- {0 0=z
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Hence

2p
2P ; ; . . L op_
S¥rier = (;) (2pjil)72+l®7—3+2 !
l:O
2P— op—1
_ l pL j op—1l4 op—1l_q
- S (L) e 3 (o) ()74 @7
=0 =0
opr—1
_ j i+1 j+2P —]
= > () GA) e
=1
op—l_1

I e s
Lo () e o
= (D) e + (7)o
as asserted. And even if €,_; = 1, it can be proved in the same manner.

Q.E.D.
Let b > a. In the case II), if 2*(ag) = 0, then

pzl(idl—@/? 72 g r(21-2)-2 p/TQd*172 ® 72

_o9d—1 _ 9 0 _
o*(Qrga_) = N where 2a = 2 2t p =1
7720722 and 2a=2"—2,3<r<d-—2.

Proof. We start from the computation of z*(aga-1_5). By lemma 4.11

0
T (ga-1_9) = { or

72 72@ 722" in this case 20 = 2" — 2,3 <r < d— 1.

Next we consider 2*(aga_y). Since

Sql(x*(%d—ﬁ) = x*(Sql%d—2> =0, (18)
Sq(¢* (0 5)) = (a3 ) =0, (19)
Sq'(2*(aa_s)) = Sq 2 1Sq “(aga-1_9) =0, (20)

18



as in the proof of Lemma 4.11, we have

T (Qlga_y) = o ® r(24=2)-2s | o § 2@ r(21-2)-2 4 P ® 7_(205_2)_215’
i=s+1
where
s = max{l, 2d2_ 2 b},
t = min{2d_4,a},

Firstly we assume x*(agi-1_5) = 0. And we shall prove p = p'. If s =1
then the equation Squ*(agd_g) = 0 means p = p/. Thus we assume s =

2d2_2 — b, that is,

2b < 2% — 4. (21)

Here we remark that by (4),
2b > a+b (22)
> 2971 2 (23)

Let ¢ := p(2b) then (21) and (23) mean ¢ < d — 2. Also

2d—1

quqx*(a2d_2) = Sq Squl’*(OéQd—l_Q) =0.

Thus, by Lemma 4.13, compare the term of 72*~2-2+27 @ 720 in S¢* 2* (aga_)
and we obtain

(p + p/)T(Qd—Q)—2b+2q ® Y (24)
Here we remark that (2¢—2) —2b+29 < 2a by (4). Thus (24) means p' = p".
Therefore

t—1
a*(oga_g) = p' Y 7¥ @ TN g 2 g p (2022

i=s

Next we consider the term p"72 @ 72'=2-20_ If 2t = 2¢ — 4, then by the
computation of Sq22* (aea_s) we have p/ = p and *(aga_p) = 3L, 7% @ 7(2*-2)-2
or 0 as asserted. Thus we assume 2t = 2a, that is,

2a < 2% — 4 (25)
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Let p := p(2a). Here from (25) p < d—1. And p = d — 1 if and only if
2q = 291 — 2.
If 2a = 2971 — 2 then
(21-4)/2

¥ (Qga_q) = p' Z 72 @ r(21-2)-2 (" + p')Tzd_I*Q .,
i=1

2d—1

If p<d-—2then
Sq?if*(azdd) = Sq2dilsq2px*(@2d—172) =0. (26)
By Lemma 4.13 look into the term of 72* @ 7(2"~2)-2042" of (26) and we obtain
(f + pyre @ 22202 (27)

Remark that by (4)
(2% — 2) — 2a + 2F < 2.
Therefore p' = p” and
t
x*(agd_g) _ p/ Z 2 ® 7_(2‘172)722"
Secondly we assume z*(agi-1_5) = 72 2@ 72 =% and 2a = 2" — 2 and
observe x*(aqi_y) again. We reset

t—1

;1:*(04201,2) _ pTzs ® 7(24—2)—25 + p/ Z % ® 7_(2d—2)—2i + p//,7_2t ® T(zd—z)—zt’
1=s+1
where
2¢d 2
s = max{l, 5~ b},
2¢ 4
t = min{ ,a}.
Then
20 = 2(a+0b)—2a (28)
> (3.2t —2) - (2t —2) (29)
= 24 (30)
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This means s = 1. Thus by the computation of Sq®z*(ama_y) We have
p=r

and also by the computation of Sq*z*(asa_s) and by (30) we have
p=0.

Therefore we obtain

/2" —2 2427
T (ga_q) = p'm* QT :

Finally we have obtained the following result

Pzgid1_4)/2 72 @ r(21-2)=2 ,0’7‘2(1_1’2 & 2
_od—1 _ o v _
7 (Qgi_g) = N where 2a = 2 2if p' =1

7222722 and 20 =2"—2,3<r<d—2.
QE.D.
In the case II) if 2*(o) = 0 then a*(aa1s)) = 0.
Proof. By (4)

* a —(24— *
T (a2(a+b)) = SQQ( )@y (aga_s).

And by Lemma 4.14 we shall prove that

{ Sq2(a+b)—(2d—2) (Z(2d174)/2 72 & 7_(2d—2)—2i) —0

SqQ(“+b)_(2d_2) (¥ @ T2d_2r) =0incasea=2"-23<r<d-1.

Since
(24-4)/2

> TR = (g y),
i=1

it follows that

(20-4)/2
ng(a+b)_(2d_2)< Z 7'2i ® T(2d_2)_2i> — Sq2<a+b)_(2d_2)x8(042d72)
=1
IL'S(Oéz(aer))
— (2((;1—1)))7_2(1 ® T2b
= 0.
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Also
Sq2(a+b)—(2d—2) (TQT—Q ® Tzd—zT)

2r—2 2d_gr 2(a+b)—(29—2
00 (yary )T

{ 7272 @ r2@+)=(2"=2) if 2(g + b) = —2 mod 2"
otherwise

But if 2(a + b) = —2 mod 2" then

(2(a+b)) _ (2(a+b)) =1 mod 2.

2a 27 -2

Thus if ( “+b) = 0 mod 2 then z*(aa(ets)) = 0.
Q.E.D.

Now we shall finish the proof of Theorem 4.7. Let z : RP" ' ARP™ ! —
QSO be an arbitrary map, n > 1, m > 1 and ("ZT;Q) = 0 mod 2. If

x*(ag) = 0 then by Lemma 4.12, Lemma 4.15 we obtain x*(ay,1m_2) = 0.
Therefore we assume z*(ag) # 0. Then from Lemma 4.9

ag) =Tt + e

Let  + 2o : RP" ' ARP™ ! — ;SO be a map which is contained in the
homotopy class [z] + [zo]. Since ©,SO is an H-space and it is known that
ag; € H*(920S0) are primitive elements,

(z +20)" (a6) =2(T? @7+ 7t @ 7%) = 0.

Therefore
(2 + 0)" (Anym—2) =0,
while
(z +20)" (ngm—2) = T (nim—2) + 75(nim—2)
= @ (@) + (") @

= " (apim-2)-
Finally we obtained that z*(c,1m_2) = 0 and Theorem 4.7 is proved.

Hiroaki HAMANAKA
DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY
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