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1 Introduction

For two subsets S and S’ of a topological group G which contain the unit of G as its
base points, we say S and S’ homotopy-commute in G, when the commutator map ¢ from
S AS" to G which maps (z,y) € SA S’ to zyz~'y~! € G is null homotopic.

In [3], the first author showed the next theorem:

Theorem 1.1. Let n, m be positive integers, and let n +m # 4 or 8. If n or m is
even or if (") = 0 mod 2 then SO(n) and SO(m) do not homotopy-commute in

SO(n+m —1).

In this paper, we describe the homotopy-commutativity of Spin(n) and Spin(m) in
Spin(n +m — 1).

Definition 1.2. If SO(n) and SO(m) homotopy-commute in SO(n+m — 1), we say
(n,m) is SO-irregular, and if not we say (n,m) is SO-regular. Also, If Spin(n) and
Spin(m) homotopy-commute in Spin(n +m — 1), we say (n,m) is Spin-irreqular, and if
not we say (n,m) is Spin-reqular.



Main theorems are the followings:

Theorem 1.3. Assume neither n —1 nor m — 1 is a power of 2 and n+m # 4 or 8. If
n orm is even or if ("Tﬁl—l) = 0 mod 2 then (n,m) is Spin-reqular.

For the case n — 1 is a power of 2, we give some results as following:

Theorem 1.4. Set n =3 and m =1 mod 4 then (3,m) is Spin-irregular.

Remark 1.5. Theorem 1.1 implies that if m # 1 mod 4, (3,m) is SO-regular.

Remark 1.6. In fact, since Spin(5) = Sp(2) and m6(Sp(2)) = 76(Sp) = I/(TS?) 7(pt) =0
where Sp is lim,, .o, Sp(n), the commutator map ¢ : Spin(3) A Spin(3) — Spin(5) is null
homotopic and (3, 3) is Spin-irregular. On the other hand, Theorem 1.1 implies (3, 3) is
SO-regular. Therefore SO-regularity and Spin-regularity is not the same.

This paper is organized as follows: In §2 we give a sufficient condition for (n,m) to
be Spin-regular, which is an existence of a map with an adequate property and show
that ,when n + m is odd, (n,m) is Spin-regular. In §3 we introduce the maps ¢;; :

Q'BOASY BO — Q7 BO to investigate If(\é_*(Spin(n) ASpin(m)) and in §4 investigate
its induced cohomology maps and prove Theorem 1.3 for the case both n and m are odd.
In §5 we look into the case n and m are even and complete the proof of Theorem 1.3 and
finally in §6 we give the proof of Theorem 1.4.

2 Lift of commutator map

Similarly to [3], consider the next fibrations :
Spin(n +m — 1)—i>Spini>Spin/Spm(n +m —1),

SO +m —1)—>80-80/50(n +m — 1),

where SO ( resp. Spin ) is lim,_.., SO(n) (resp. lim,_., Spin(n) ).
We refer to the cohomology rings of spaces which we use in this paper, that is,

H*(QSpin) = Z/2Z[as, ay, a6, -]/ (aar — agr?),
H*(Spin(k)/Spin(k —1)) = A(zr_y, -, Tk_1),
H*(Spin(k)) = A(xg,xg,,xg,a:?,xg,---)®/\(z).
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In the last equality, the index 7 of x; scans all integers neither of which is not a power of
2 and 3 <i <k —1. Also, deg(ay;) = 2i and deg(z;) = 1.

Further, it can be easily seen that H*(Q2Spin/Spin(n +m — 1)) =0 for x <n+m—3
and H"""2(Q8pin/Spin(n +m — 1)) = Z/2Z whose generator is written as v, m_a.
When n + m is even, Qp*(p1m—2) = Qpim—2 € H*(Q2Spin).

From above fibrations, we can deduce the following fibration sequences.

SN Q,S’pzn—>Q(,S’pzn/Spm(n +m — 1))651""

Spin(n 4+ m — 1)—>szn—>szn/szn(n +m —1),
.= Q80-"50(80/SO(n +m — 1)) 2%
SO(n+m — 1)—>SO—>SO/SO(n +m—1).

Let cso (resp. cspin) be the commutator map from SO(n) A SO(m) to SO(n+m — 1)
(resp. from Spin(n) A Spin(m) to Spin(n +m — 1)). Obviously we can see that i o cgpip
and j o cgo are null homotopic. Thus there exists a lift of cgo from SO(n) A SO(m) to
QS0/S0O(n +m — 1) and alift of cgpy, from Spin(n)ASpin(m) to QSpin/Spin(n +m — 1).

In [4], a lift of cgp written as Ago was constructed and in [3], it is obtained that

ASO*<an+m72) =Tp—1 ® Typ—1- (1)

Here set Aspin = Aso © (Pn A Pm)-

Lemma 2.1. Agpinis a lift of cspin, that is, dspin © Aspin = Cspin-

Proof. See the diagram below.
QSpin/Spin(n +m — 1)

/\Spin Sspim \
QS0/SO(n+m—1)
Spin(n) A Spin(m) Copin VSM—I— m—1) 350
\m/\% \%\

SO(n) A SO(m) —59 O(n +m — 1)

%

Spin J

\

SO



Since dgo © Ago =~ cso and 0so = Ppym—1 © Ospin, it occurs that

Pn+m—1© 5Spin o /\Spin = 580 o )\SO o (pn A\ pm)
~ Cso © (pn /\pm)

Pn+m—1 © CSpin (2)

Now consider the fibration Z/27Z — Spin(n+m —1) — SO(n+ m —1). Then for
any CW complex X we have the exact sequence of base pointed homotopy sets:

[X,7/27),—[X, Spin(n + m — 1)],”" 257X, SO(n + m — 1)),
Thus py4m-1, 1s injective and from 2 we can see
dSpin © ASpin = CSpin-
Q.E.D.
In the rest of paper, ¢, A, § stands for cgpin, Aspin, Ospin respectively.
Proposition 2.2. Assume neither n — 1 nor m — 1 is a power of 2.
1. If n+m is odd, c is not null homotopic.

2. Let n+m is even. If for any continuous map x from Spin(n) A Spin(m) to Q2Spin,
T (pym—2) # Tn_1 @ Ty—1 10 cohomology, then c is not null homotopic.

Proof.

If ¢ is null homotopic, that is, § o A ~ %, then there exists a map = : Spin(n) A
Spin(m) — QSpin such that Qpox ~ A.

From (1) we can see

T (Onpm—2) = =0 Qp*(Qnim-2)
= X\ (an+m—2>
= (Pn APm)" 0 As0™ (Qngm—2)
= (Pn A )" (Tn—1 @ Tim—1)
Ty @ Tp_1, (3)

since neither n — 1 nor m — 1 is a power of 2. Thus the statement for the case n + m is
even is proved.



When n + m is odd, it occurs that

A*(Oén—‘rm—Q) = x*on*(Oén—ﬁ—m—Q)
= 27(0),

since H*(£2Spin) is concentrated in even degrees. This contradicts to (3) and ¢ is not null
homotopic.

Q.E.D.

3 I/(\é_*(sz’n(n) A Spin(m))

In this section we assume that both n and m are odd.
From Proposition 2.2 we should look into the homotopy set [Spin(n)ASpin(m), 2Spin].
By use of KO-theory we can say that,

[Spin(n) A Spin(m), QSpin] = [Spin(n) A Spin(m), 2,SO] = l/(\(/)ﬁ(Spm(n)/\Spm(m)),

since B0 =~ QS0.

Further more, the complex representation ring of Spin(2k + 1) is generated by real
representations or symplectic representations. (See Proposition 6.19 in P.290 of [8].)
Thus Theorem 5.12. in [11] implies that, when n is odd, KO *(Spin(n)) is KO *(pt)
free. Therefore we have an decomposition of

KO (Spin(n) A Spin(m)) = KO (Spin(n)) @ » KO (Spin(m)).

KO

From now on, we identify ﬁii(X) with [X, Q'BO].
Theorem 3.1. There is a map ¢;; : Q'BO A QjBO — QI BO such that for any CW-
complezes X, X' and o € I/(\é_Z(X) and 3 € [?5_]()(’),
~ . = (i) y
a®fB = ¢ijo(aNp) in KO (X ANX').

Proof. First we construct ¢; ;. Let &, be the universal vector bundle over BO(n) and put
N =& — N, Noo = liMy, oo M. And set ¢gp : BO AN BO — BO as the classifying map of
Moo @)oo Let k; : X BO — BO be the map which satisfies

Adil{i ~ IinBO'
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Consider the composition of x; A k; and ¢ :

SO BO A BO Y BO A BO@BO

We define ¢, ; as
gbi,j = Adi+j(¢070 o (/{7; N Iij)) : QZBO A Q]BO—>QZ+]BO
Now, take a € [X,Q'BO] and 3 € [X’,Q BO] and see the composition of @ A 3 and

Gij:

pijo(aAB): XANX — QBOANYBO — Q" BO.
Taking Ad~0H) of the above composition, we obtain

AT (@50 (a A B)) = (Ad"TH)g, ) o (Sia A X7 B)

YT (X AX) — S (Q'BO AQYBO) — BO.

From definition of ¢; ;, Ad™ (i+3) (¢ 0 (a A B)) is the composition of following maps:

(bOO

)E ‘aASI ﬁZZ+J(QzBO A Q]BO) _) BO AN BO—BO. (4)

YH(XAX
Lemma 3.2. For any continuous map f : ‘X — BO,
[~ R (SPAdS).
Proof. Consider the composition of Ad’f and identity map of Q'BO.
X 0 B0 B0 BO.
Taking Ad™" of the above composition, we have
f=Ad "(Idgigo o Ad'f) = k; 0o L'Ad'f

SiAdf

XA i ot BO.

Q.E.D.



By (4) and the above lemma, it follows that

A (g0 (@nB)) = dogo (ki Ary)o (EaAYp)
~ ¢pgo (K;o Yia) A (kjo ¥ 3)
~ ¢070 (@) (Ad_ZOZ A Ad_]ﬁ)

Since f € [X, Q2 BO)] corresponds to (Ad™"f)*(ns) € lf(\aii(X), the above equation
says that ¢; j o (a A 3) corresponds to

(A" A Ad ™ B)* Go0* (M) = Ad ™" 0" (1)00) OAD ™ 5% (10
Therefore we obtain that
- . () ,
a®B = ¢ijo (aAp) in KO (X NX").
Q.E.D.

From the above theorem, we can deduce the next theorem.

Theorem 3.3. Assume both n and m are odd. If, for all (i,j) € Z/8Z? which satisfy
i+7J =2, ¢ij" (Antm—2) =D bs @ ¢, where |bs| = s and |¢;| =t and by,—1 ® ¢ = 0 then
¢ : Spin(n) A Spin(m) — Spin(n + m — 1) is not null homotopic.

—_9 —— —1q
Proof. For any n € KO (Spin(n) A Spin(m)), there exist o, € KO (Spin(n)) and
B, € KO ™" (Spin(m)) such that n = > ,®0, and i, +7j, = 2. Since v, ,,_o is primitive,

77*<04n+m*2) = (Z O‘a®ﬁa)*(an+m72> = Z(aa@)ﬂa)*(o‘nﬂn*ﬂ
and by Theorem 3.1,
(a®ﬁ)*(an+m72) = (CY A 6)* o (bi,j*(&nerfQ)-

If the hypothesis is satisfied, n* (v, 1m—2) can not be z,,_1 ® ,,,_1. Therefore from Propo-
sition 2.2, ¢ is not null homotopic.

Q.E.D.



4 the case n and m are odd

In this section we investigate the induced cohomology map of ¢;; for (i,j) € (Z/8Z)?,
such that, 1 + 7 = 2.
We start from the next lemma.

Lemma 4.1. Assume a € H*(QX' BO) is primitive and ¢;;"(a) =Y, bs ® ¢; where
|bs| = s and |c¢;| =t. Then by and ¢; are primitive.

Proof. Since for any «a, 3,7 € I/(\é(X),

(pi(a) ® p5(3)) @ p3(v) = (Pi(a) @ p3(7)) © (P5(B) ® P3(7))

where p; : X x X x X — X is the projection to i-th component, the next diagram
commutes.

OVBO x O¥BO x B0~ 0iBO x WBO

i(lexl)o(lxle)
Q'BO x QB0 x Q'BO x Q' BO i
|1,
L o Qitiy
QT BO x Q' BO BO

Here T is the transposition map, A is the diagonal map and p: BO x BO — BO s the
classifying map of 7 X 100 over BO x BO. Further, ¢, ; is the next composition:

Q'BO x VBO — Q'BO A QB0 — Q™ BO.
Let a € H*(Q"" BO) be a primitive element. Then we have
(1®A) (1@ T ®1)o(diy; @ diy)op(a)
1@A) (1T ®1)o(dy; @iy Na®1+1®a)
1oAY o(1eT o)) bea®lel+) 1018b@c)
= 1A beleael+) 10b,0110¢)
(
(

Y bheloa+ Y 10b®c)

d @1+ 1@b) ®c).



Also
(W @l)og; (a) = (Wel)d b.oa)
ZN ) ® ¢t

The above diagram says that these are the same. Therefore it occurs that p*(bs) =
bs ® 1+ 1® by, that is, b, is primitive. Similarly we can prove that ¢; is primitive.

Q.E.D.

Theorem 4.2. Let i + j = 2 and n and m be odd. Assume ¢; j(0pim—2) = Y, bs @ ¢
where |bs| = s and |¢;| = t. If (""" ) =0 mod 2, then b,y ® ¢y = 0.

Proof. From assumption, (4,7) is (1,1), (2,0), (3,7), (4,6), (5,5), (6,4), (7,3) or (0,2).
From the symmetricity, we shall look in to the cases (¢,7) = (1, 1), (2,0), (3,7), (4,6) and
(5,5).

For ¢37, ¢55, the proof is easy. From the assumption, n —1 and m — 1 are even and by
Lemma 4.1, b, and ¢,,_1 are primitive. On the other hand, it is known that all of the
non-zero primitive elements of Q*BO, 2°BO are in odd degrees. (7] Thus b,,—1 ® ¢y g = 0.

To start the proof for ¢, we investigate ¢g".
Let N=2",r€ Nand ne€ KO(BO(N)A BO(N)) be the class of

n=({n — N)®(Env — N).

We calculate the total Stiefel-Whitney class of n in H*(B(Z/2Z)¥NAB(Z/27Z)N) > H*(BOA
BO). Let ty, - ,ty and t}, -+ ,t)y be the generator of H*(B(Z/2Z)N A B(Z/27Z)")
where ¢; corresponds to the first component and ¢, corresponds to the second. Then
wy = ox(ty, -+ ,ty) and wy, = ox(ty, - ,ty) (1 < k < N) are the generators of
H*(BO A BO) where oy, is k-th fundamental symmetric polynomial. (We put wy = 1.)
Also we set S] = St/

i=1"1

Lemma 4.3. The total Stiefel-Whitney class of n satisfies

=2

1k
w(n) =1+ Z wN_k®Sl’ modulo (w1®1,w2®1,---,w1\7®1)2
0 1=0

in H*(BO(N) A BO(N)) for x < N.

>
I



Proof. Since
n=Env®En — ENON — N&Ey + N®N,

we can see that

win) =[]  @+u+t) JJ a+t)™ J] @+~

1<i<N, 1<G<N I<i<N 1<j<N

Here in the part of degrees less than N, (1+t;)™" = (1+¢,V)™! = 1 and also (1+#})" = 1.
Therefore modulo @, y H(B(Z/2Z)~ x B(Z/2Z)"), we obtain that

w(n) = H (ti +1+41))

1<i<N, 1<j<N
N N
= H > w(1 1)V )
: k=0
N N N-k
- IO+ S (O,
Jj=1 k=1 =0
We proceed the calculation modulo (w; ® 1w, ® 1, Jwy ® 1)2 and obtain
N N-k

w(n)

Il
—
_I_
]
I M |
=
=
£
N

Il
—
_|._

Y. (Twsi.

1<k,1<I, E+HISN
Q.E.D.

Lemma 4.4. Letk, I, v € N. If 2" > k +1, then (* %) = (*"") mod 2.

Proof. We set the binary expansion of £ — 1, [ as
E—1= > &2 1= ) &2
0<i<r—1 0<i<r—1

Then we have

G == 1D 60

0<i<r—1

Therefore (QT;]C) = 0 if and only if, for some 1, (1;61') =0,ie,¢ =20 =1.
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Assume, for some i (0 < i <r —1), ¢ =9; = 1. Then let iy be the smallest such a
number. Then 4y-th coefficient of the binary expansion of £ + 1 — 1 is 0, while ¢,, = 1.

Thus we have (k+§_1) = (.
Vice versa if, for any ¢ (0 <4 <r — 1), not both ¢; and ¢; are 1, then

7= 11 (520

0<i<r—1

Therefore (Tl_k) = (k+§_1) mod 2.

Since ¢ is the classifying map of 7,,®7., Lemma 4.3 implies that

Poo" (w;) = Z e S

k+l=i

= Z (k+§_1)wk®sll modulo (w1®1,w2®1’w3®1,...

k+1=i

where r is sufficiently large.
Therefore

(Kjg VAN IdBO)* o ¢0’0*(wi) = Z (k+§_1)22ak,2 & Sl/7

k+l=i, k:even

since

N Y2a;_o k:even
re' (W) =\ k: odd

and rko*(decomposable element) = 0.
From definition, ¢y = Ad2(n2 A1d o ¢g) and then we have

$2,0" (asi2) = Z (k;rl) ap & Sy,

k+1l=4i+2, k:even

B (R

here we remark that ( .

it occurs that

P2,0" (A2p(4i42)) = Z (k;rl) a” ® 9%,

k+1=4i+2, k:even

11

Q.E.D.

(6)

! ) when & and [ are even. From (6), and since as, = ag?,



Thus the coefficient of b,,_1 ® ¢;p—1 I P20" (Aptm—2) is 0 when ("Z’f‘l_ 2) = 0 and the
statement is true for ¢o .

Second case is ¢;,1. Consider the composition of following maps.

$QBO AS0BO™ 1 B0 A BOPBO.

From (5) and since x1*(decomposable element) = 0 and

R (wg) = B

N Yx;_1 k:odd
k1'(S1) = {0 o k : even

the induced cohomology map of this composition can be obtained as

(k1 A1) 0 dog™(wi) = (maAm)' (Y, (7S @w) (7)
k+l=i
= Z (kJr;il)ZJ}l_l & ZJZk_l. (8)
k+1=i,l: odd
Here we remark that (Hf*l) = 0 when [ is odd and % is even. Thus it occurs that
(:‘il AN lil)* O ¢070*(wi) = Z (IH_;_I)E.%’l,l ® El’kfl. (9)

k-+i=i, I: odd, k: odd

Similarly as the case of ¢a, ¢11 = Ad*(k1 A Ky o ¢00) and from (9) we have

G117 (i) = Z (k+§_1)335—1 ® Tg—1

k+1=4(i+1), I: odd, k: odd

- > ("M @ ay. (10)

k+l=4i+2,1: even, k: even

And also

P11" (apaiv2)) = Z (k;rl)mlzp ®Q xi%. (11)

k+1=4i+2,1: even, k: even

Thus the coefficient of b,—1 ® ¢p—1 In @11 (Aprm—2) is also 0 when ("JTFLT;Q) =0 and
the statement is true for ¢y ;.
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The final case is ¢46. Let &, €€ and €I be the universal bundle over BO(n), BU(n)
and BSp(n) respectively and put

=R —n, S =8 —n, ni =& —n.

and
R _ 1. ¢R C _ i ¢C H_ . ¢H
Nae = lim & —n, ng = lim { —n, ng = lim §; —n.
n—oo n—oo n—oo

Also set ¢ be the classifying map of (n®)c, complexification of n®, ¢’ be the classifying
map of nil as a complex vector bundle and 1 be the classifying map of nS&n< over
BU N BU.

We start from the next lemma.

Lemma 4.5. The next diagram commutes.
A

BSp AN BSp—— BUA BU

|01 lw

BO z BU

Proof. Consider the next composition:

Y4BSp A S4BSp M BO A BO@BOLB U.

Here in K-theory, c¢*(n€) = (n®)c and ¢o0" (n®)c) = (nB)c®(nB)c. Also it is known
that k4*((NB)c) = ((u — H)@cntl where (g is the H canonical line bundle over HP!.
Therefore above composition pulls back 7 to ((g — H)®c¢ (¢ — H)@cnl@en.

On the other hand consider the next composition:

!
Kg

ysBU A BUZLSSBU . BU.

8 (/A
—

>*BSp A BSp

Here r§ is defined as follows. From Bott Periodicity, we know that Q*BU = BU x Z.
Thus there exists a map «}; : Y2 BU — BU which satisfies Ad*k}; is the inclusion map
BU — Q*BU. One can easily verify that

Ry o D2y 0 T2 o~ k),

and it is known that in K-theory x5,"(nS) = ((c — C)®@n< where (¢ is the canonical
line bundle over CP'. Therefore x}" = ((c — C)*@n<. Now we can see that the above
composition pulls back n< to ((¢ — C)*@nHecnt.

13



Since K~4(pt) = Z and the second Chern class of —(Cg — H) and ((¢ — C)? coincide,
we see that the above two compositions are homotopic each other.
Take the Ad® of two compositions and we obtain

cogua~od
Q.E.D.

Refer to the diagram of Lemma 4.5. We want to calculate ¢4 4(w;). As we have done

in the proof of Lemma 4.3, let N = 27, 7 € N and § € K(BU(2N) x BU(2N)) be the class
of = (£5y — 2N)®(ESy — 2N) where £5y is the universal vector bundle over BU(2N).
Also let 1 be the classifying map of 6.

First, we calculate the total Chern class of § in H*(BT*Y x BT?N) > H*(BU(2N) x
BU(2N)). Let ty,--« ,ton,th, -+ ,thy € H(BT?N x BT*) be the generators as usual.
Then in the part of degree less than 4N,

¢N*(1+Zcz') = H (1 +t; +15).

1<i<2N,1<j<2N

Now we proceed the calculations of (¢! A ¢)*n*(1+ Y 00, ¢;) in H*(BTYN x BTN) >
H*(BSp(N)x BSp(N)). Let s1,-+ ,8n,8,, -+, 8 € H(BTY x BTY) be the generators.
Then we can see

(c'Ac')wN*(HZc,-) = (@rd)C ] a+ti+t))

1<i<2N,1<j<2N

= H (T+ s+ 85)(1 48— s5) (1 — s+ 55)(1 — 57 — 5

1<i<N,1<GSN

= [T @+si+s)

1<iSNISGSN

= { J] @+s2+s~

1<i<N, 1<G<N

On the other hand, considering H*(BSp(N)) C H*(BSp), in the part of degree less
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than 4N,

o0 o0

(CIAC,)*¢N*(1 +ch) = ¢474*C*<1+ZC1‘)
i=1 i=1
= ¢aa (1+ Z wy)
=1

= ¢4’4*(1 + Zwl)2
=1

Since H*(BSp N BSp) is a subalgebra of a polynomial algebra, the square of any
element in H*(BSp A BSp) does not vanishes. Therefore

Paa”(1+ Z w;) = H (1+ s+ 53-2)}2.
=1 1<i<NI<G<
in the part of degree less than 2/V.
We set ¢, = (s, -+ ,s%%) (1 < k < N) which are the generators of H*(BSp(N))
and Q; = SN | ;% which is the primitive element of H*(BSp(N)). Now we have in the
part of degrees less than 2N

Gaa (14 wi) = [T a+s2+5%
i=1 1<i<N,1<j<N
N N

= IO _(+s®)*avy)

i=1 k=0
N N-1 k
= JIO+ >3 ()sdv-)
i=1 k=0 1=0
Now we proceed the calculations modulo (qf, -+, ¢y)*
0o N-1 k
Gaa”(1+ Z w;)) = 1+ (];) Qi
i=1 k=0 I=1
N N—k
= 1YY (Ve
k=1 I=1

Il

—

_I_

1]+

=
=
O
=
>~



This leads us to the next lemma.

Lemma 4.6. Modulo (1 ® q1,1® q2,1®¢s,---)?,

Gaa”(w;) = ElSkJSl,kH:j (k+§_1>Ql Qq =4y
| Z 0 1% 0 mod 4

where H*(BSp) = Z/2Z[q1,q2,q3,- -] and Q; € H*(BSp) is the primitive element of
degree 41.

Let &' : ¥2Q°B0O — Q'BO be the map which satisfies Ad*(x’) = Idgsge. Then it
can be easily verified that Ad2(<;§4,4 oldgipo A K') = ¢a. Since

'f/*(Ql) = E2541—2,

where H*(Q?2BSp) = A (b, bs, bs, - - ) and by;_» is primitive, it occurs that

(Ida1po A K') ¢aa™ (wai) = Z ("1 Q1 ® S%bay—o

1<k 1<l k+1=i

and

Pa6" (a4i—2) = Z ("N Q ® bag—s.

1<k, 1<l k+l=j

Remark that (“H71) = (+ii=t) — (1h+di=2y 5 q

Gu6" (Azp(ai-2)) = Z (*TIVQY @ bap—s™

1<k, 1< k+1=j
Therefore the statement is also true for ¢g.
Q.E.D.(Theorem 4.2)

From Theorem 3.3 and Theorem 4.2, the next theorem follows.

Theorem 4.7. Assume neither n — 1 nor m — 1 is a power of 2 and both n and m are
odd. If ("2”_1;2) =0 mod 2, (n,m) is Spin-regular.
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5 the case n and m are even

In this section we use integral cohomology. Consider the next diagram.

gn—1 _ i Spin(n) In, gn-t

Lk

RP"! —"> 5O (n) —"— "1

Here 7, 7/, is the map obtained from Spin(n) — Spin(n)/Spin(n —1) = S"~ and
SO(n) — SO(n)/SO(n — 1) = S™~! respectively. Also i, is the inclusion map defined as
follows. Let [ € RP""! be a line and let e € [ be a unit vector. Then i,(l) = i (lo)i’ (1)
where i’ (I)(v) = v—2(v, e)e and Iy is the base point of RP™""!. We set p{, : "1 — RP" !
be the usual covering map then there is a map 4, which makes diagram commutative.
Moreover, when n = 4, 7, has a section € : S"™! — Spin(n), that is, 7, o e = Id.

We set ¢, 1 as the generator of H*(S""!;Z) and take § € H*(Spin(n) A Spin(m);Z)
as 0 = (mp A ) *(Cne1 ® Cm1)-

Lemma 5.1. Ifn and m are even and neither n nor m is 4,
H™=2(Spin(n) A Spin(m); Z) = (8) © Ker(in Aip)*.

Proof. Since n is even, 4,7 *(c,_1) is the generator of H**(RP"';Z) = Z. Therefore

] *

E;‘;Wn*(cn_l) =i, (en1) = 2051, (12)

that iS, ;n VAN gm*(é) = 4Cn_1 X Cm_1-

Because pl,* : H* ' (RP";Z/27Z) — H"'(S""';Z/27Z) is a 0-map and i* o p,* =
Pl oi,*, we have i* o p,* = 0 in mod 2 cohomology. Further, since, when n # 4, p,* :
H"1(SO(n); Z/27Z) — H"(Spin(n); Z/2Z) is epic, this implies that 7 : H*~*(Spin(n); Z/27Z) —
H"1(S" 1 Z/27) is also a 0-map. Therefore Imi* C (2¢,_;) in integral cohomology.

Now we obtain that Tm(i, A i)* = (4cp1 @ cm1) = {((in A i,)*(9)) and from the
freeness of H"*"~2(S"+m=2. 7 the statement follows.

Q.E.D.

Lemma 5.2. If n =4 and m are even and m # 4,

H™t™=2(Spin(n) A Spin(m); Z) = (8) ® Ker(e Aip)".
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Proof. From (12) and €*m,*(c3) = cs,
(€ Nip)*(8) = 2¢n—1 ® 1.

As seen in the proof of previous lemma, Imz*, C (2¢,,_;) in integral cohomology and
since € is a section, Ime* = (c3).

Now it follows that Im(e A 7,,)* = (2¢5 @ 1) = ((€ A1py)*(0)) and from the freeness
of H"m=2(§ntm=2.7) the statement follows.

Q.E.D.

Theorem 5.3. Assume neither n —1 nor m — 1 is a power of 2, both n and m are even,
n+m =0 mod4 and n+m > 16. Then (n,m) is Spin-reqular.

Proof. We use Proposition 2.2. Let x : Spin(n)ASpin(m) — QSpin satisfies £*(ayym—2) =
Tp1 ® Tpy_1 in mod 2 cohomology. Then there exists n € KO(X2Spin(n) A Spin(m))
which satisfies

wn+m(77) = 221’”,1 & Tm—1- (13)

Here, since Pontrjagin square acts trivially in H*(X2Spin(n) A Spin(m);Z), by the
second formula of Wu [12],

p1(Pan (1) = (), (14)
where w’

rm is the image of w4, under the coefficient monomorphism 7Z/27 — Z/AZ
and p4 is the map of mod 4 reduction.
When neither n nor m is 4, from (13), (14) and Lemma 5.1, we can see that

Puin(n) = Y2((4k 4+ 2)5 + ),
where o € Ker(i, A i,,)* and we obtain
Puin (2% (i A i) (n)) = (16k + 8)Crpm-
When n =4 and m # 4, (13), (14) and Lemma 5.2 imply that
Pasa (n) = S2((4k +2)5 + ),
where 3 € Ker(e A 4,,)* and we have

Pusn (Z2(e Al)* (1) = (8K + 4)coem.

But for the generator 1y of KO(S™+™), Puin (o) is divisible by (mEm — 1)L [1] When
n + m > 16 this is a contradiction and the statement follows.
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Q.E.D.

Theorem 5.4. Assume neither n — 1 nor m — 1 is a power of 2, both n and m are even.
Ifn+m=12 orn+m =2 mod 4 . Then (n,m) is Spin-reqular.

Proof. We use Proposition 2.2. Let x : Spin(n) A Spin(m) — QSpin be the arbitrary
continuous map.

When n+m = 2 mod 4, that is, n+m — 2 is divisible by 4, z*(y1m—2) = x*(OZTH»T'rH)2
in mod 2 cohomology. Thus x*(a4m—2) can be written in the form > a ® 3 where o and
(3 are decomposable. Therefore x*(ayym—2) # Tn-1 @ Tp_1-

Now let n+m = 12 and n < m. When n # 4, z*(ag) = x3 ® x3 or 0 and when n = 4,
() = 2 ® w3, T3 @ w3 or 0. We can see

Sq%*(%) = -T*(SOIQO%‘) = 1" (ag) = x*(a2)4 =0
while
Sq2l'3 ®r3 =5 QT3+ T3 Q Ts,
Sz ® x5 =2 ® s,

So 2*(ag) = 0 and we have
a*(cao) = 2*(Sq*a) = Sq*z* (ag) = 0.
Q.E.D.

From Proposition 2.2, Theorems 4.7, 5.3, 5.4, we finally obtain Theorem 1.3.

6 (3,4k+ 1) is Spin-irregular

In this section we shall give the proof of Theorem 1.4 which requires that (3,4k + 1) is
Spin-irregular.

Since there are embeddings Spin(3) — Spin(4k + 3), Spin(4k + 1) — Spin(4k + 3)
where any element of Spin(3) and any element of Spin(4k) C Spin(4k + 1) exactly
commute in Spin(4k +3). Let A € Spin(3), B € Spin(4dk+1), C € Spin(4k) C
Spin(4k +1). Then A(BC)A™Y(BC)™' = ABCA™'C~'B™' = ABA™'B~! and the com-
mutator of A and B is invariant under the right translation of Spin(4k) on B.

Therefore there exists a map ¢ : Spin(3) A (Spin(4k + 1)/Spin(4k)) — Spin(4k + 3)
such that ¢ o (1 A mypy1) =~ c. See the diagram below. Remark that Spin(3) = S* and
Spin(4k + 1)/Spin(4k) = S,
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QS0/SO(4k + 3)

Is

Spin(3) A Spin(4k + 1) Spin(4k + 3)
MM,CH\L / J{z
g3 A Gak Spin

In the above diagram QSO /SO(4k + 3) — Spin(4k + 3) — Spin is a fibration and

i o is null homotopic. So there exists a map \ : S¥*+3 — Q80 /SO(4k + 3), such that
doAx~c.

Since m4y44(SO/SO(Ak +3)) 2 0 ([10]), 74p15(Q2SO/SO(4k +3)) = 0 and A is null

homotopic.

Thus ¢~ §o Ao (1 Amype1) = * and Theorem 1.4 is proved.
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