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1 Introduction

For two subsets S and S ′ of a topological group G which contain the unit of G as its
base points, we say S and S ′ homotopy-commute in G, when the commutator map c from
S ∧ S ′ to G which maps (x, y) ∈ S ∧ S ′ to xyx−1y−1 ∈ G is null homotopic.

In [3], the first author showed the next theorem:

Theorem 1.1. Let n, m be positive integers, and let n + m 6= 4 or 8. If n or m is
even or if

(
n+m−2

n−1

) ≡ 0 mod 2 then SO(n) and SO(m) do not homotopy-commute in
SO(n + m− 1).

In this paper, we describe the homotopy-commutativity of Spin(n) and Spin(m) in
Spin(n + m− 1).

Definition 1.2. If SO(n) and SO(m) homotopy-commute in SO(n + m− 1), we say
(n,m) is SO-irregular, and if not we say (n,m) is SO-regular. Also, If Spin(n) and
Spin(m) homotopy-commute in Spin(n + m− 1), we say (n,m) is Spin-irregular, and if
not we say (n,m) is Spin-regular.
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Main theorems are the followings:

Theorem 1.3. Assume neither n− 1 nor m− 1 is a power of 2 and n + m 6= 4 or 8. If
n or m is even or if

(
n+m−1

n−1

) ≡ 0 mod 2 then (n,m) is Spin-regular.

For the case n− 1 is a power of 2, we give some results as following:

Theorem 1.4. Set n = 3 and m ≡ 1 mod 4 then (3,m) is Spin-irregular.

Remark 1.5. Theorem 1.1 implies that if m 6≡ 1 mod 4, (3,m) is SO-regular.

Remark 1.6. In fact, since Spin(5) ∼= Sp(2) and π6(Sp(2)) ∼= π6(Sp) ∼= K̃Sp
−7

(pt) ∼= 0
where Sp is limn→∞ Sp(n), the commutator map c : Spin(3)∧ Spin(3) → Spin(5) is null
homotopic and (3, 3) is Spin-irregular. On the other hand, Theorem 1.1 implies (3, 3) is
SO-regular. Therefore SO-regularity and Spin-regularity is not the same.

This paper is organized as follows: In §2 we give a sufficient condition for (n,m) to
be Spin-regular, which is an existence of a map with an adequate property and show
that ,when n + m is odd, (n,m) is Spin-regular. In §3 we introduce the maps φi,j :

ΩiBO∧ΩjBO → Ωi+jBO to investigate K̃O
−∗

(Spin(n)∧Spin(m)) and in §4 investigate
its induced cohomology maps and prove Theorem 1.3 for the case both n and m are odd.
In §5 we look into the case n and m are even and complete the proof of Theorem 1.3 and
finally in §6 we give the proof of Theorem 1.4.

2 Lift of commutator map

Similarly to [3], consider the next fibrations :

Spin(n + m− 1)
i−→Spin

p−→Spin/Spin(n + m− 1),

SO(n + m− 1)
j−→SO

q−→SO/SO(n + m− 1),

where SO ( resp. Spin ) is limn→∞ SO(n) (resp. limn→∞ Spin(n) ).
We refer to the cohomology rings of spaces which we use in this paper, that is,

H∗(ΩSpin) = Z/2Z[α2, α4, α6, · · · ]/(α4k − α2k
2),

H∗(Spin(k)/Spin(k − l)) = ∆(xk−l, · · · , xk−1),

H∗(Spin(k)) = ∆(x3, x5, x6, x7, x9, · · · )⊗
∧

(z).
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In the last equality, the index i of xi scans all integers neither of which is not a power of
2 and 3 ≤ i ≤ k − 1. Also, deg(α2i) = 2i and deg(xi) = i.

Further, it can be easily seen that H∗(ΩSpin/Spin(n + m− 1)) = 0 for ∗ ≤ n+m−3
and Hn+m−2(ΩSpin/Spin(n + m− 1)) = Z/2Z whose generator is written as αn+m−2.
When n + m is even, Ωp∗(αn+m−2) = αn+m−2 ∈ H∗(ΩSpin).

From above fibrations, we can deduce the following fibration sequences.

· · · → ΩSpin
Ωp−→Ω(Spin/Spin(n + m− 1))

δSpin−→
Spin(n + m− 1)

i−→Spin
p−→Spin/Spin(n + m− 1),

· · · → ΩSO
Ωq−→Ω(SO/SO(n + m− 1))

δSO−→
SO(n + m− 1)

j−→SO
q−→SO/SO(n + m− 1).

Let cSO (resp. cSpin) be the commutator map from SO(n)∧SO(m) to SO(n + m− 1)
(resp. from Spin(n) ∧ Spin(m) to Spin(n + m− 1)). Obviously we can see that i ◦ cSpin

and j ◦ cSO are null homotopic. Thus there exists a lift of cSO from SO(n) ∧ SO(m) to
ΩSO/SO(n + m− 1) and a lift of cSpin from Spin(n)∧Spin(m) to ΩSpin/Spin(n + m− 1).

In [4], a lift of cSO written as λSO was constructed and in [3], it is obtained that

λSO
∗(αn+m−2) = xn−1 ⊗ xm−1. (1)

Here set λSpin = λSO ◦ (pn ∧ pm).

Lemma 2.1. λSpinis a lift of cSpin, that is, δSpin ◦ λSpin ' cSpin.

Proof. See the diagram below.

ΩSpin/Spin(n + m− 1)

δSpin

²²

∼=
**TTTTTTTTTTTTTTTT

ΩSO/SO(n + m− 1)

δSO

²²

Spin(n) ∧ Spin(m)
cSpin //

λSpin

33

pn∧pm

((QQQQQQQQQQQQQ
Spin(n + m− 1)

i

²²

pn+m−1

**TTTTTTTTTTTTTTTT

SO(n) ∧ SO(m)
cSO //

λSO
22

SO(n + m− 1)

j

²²

Spin

**UUUUUUUUUUUUUUUUUUUUU

SO
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Since δSO ◦ λSO ' cSO and δSO ' pn+m−1 ◦ δSpin, it occurs that

pn+m−1 ◦ δSpin ◦ λSpin = δSO ◦ λSO ◦ (pn ∧ pm)

' cSO ◦ (pn ∧ pm)

= pn+m−1 ◦ cSpin (2)

Now consider the fibration Z/2Z → Spin(n + m− 1) → SO(n + m− 1). Then for
any CW complex X we have the exact sequence of base pointed homotopy sets:

[X,Z/2Z]∗−→[X,Spin(n + m− 1)]∗
pn+m−1∗−→ [X, SO(n + m− 1)]∗.

Thus pn+m−1∗ is injective and from 2 we can see

δSpin ◦ λSpin ' cSpin.

Q.E.D.

In the rest of paper, c, λ, δ stands for cSpin, λSpin, δSpin respectively.

Proposition 2.2. Assume neither n− 1 nor m− 1 is a power of 2.

1. If n + m is odd, c is not null homotopic.

2. Let n+m is even. If for any continuous map x from Spin(n)∧Spin(m) to ΩSpin,
x∗(αn+m−2) 6= xn−1 ⊗ xm−1 in cohomology, then c is not null homotopic.

Proof.
If c is null homotopic, that is, δ ◦ λ ' ∗, then there exists a map x : Spin(n) ∧

Spin(m) → ΩSpin such that Ωp ◦ x ' λ.
From (1) we can see

x∗(αn+m−2) = x∗ ◦ Ωp∗(αn+m−2)

= λ∗(αn+m−2)

= (pn ∧ pm)∗ ◦ λSO
∗(αn+m−2)

= (pn ∧ pm)∗(xn−1 ⊗ xm−1)

= xn−1 ⊗ xm−1, (3)

since neither n − 1 nor m − 1 is a power of 2. Thus the statement for the case n + m is
even is proved.
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When n + m is odd, it occurs that

λ∗(αn+m−2) = x∗ ◦ Ωp∗(αn+m−2)

= x∗(0),

since H∗(ΩSpin) is concentrated in even degrees. This contradicts to (3) and c is not null
homotopic.

Q.E.D.

3 K̃O
−∗

(Spin(n) ∧ Spin(m))

In this section we assume that both n and m are odd.
From Proposition 2.2 we should look into the homotopy set [Spin(n)∧Spin(m), ΩSpin ].

By use of KO-theory we can say that,

[Spin(n)∧Spin(m), ΩSpin ] ∼= [Spin(n)∧Spin(m), Ω0SO ] ∼= K̃O
−2

(Spin(n)∧Spin(m)),

since Ω2BO ∼= ΩSO .
Further more, the complex representation ring of Spin(2k + 1) is generated by real

representations or symplectic representations. (See Proposition 6.19 in P.290 of [8].)
Thus Theorem 5.12. in [11] implies that, when n is odd, KO−∗(Spin(n)) is KO−∗(pt)
free. Therefore we have an decomposition of

K̃O
−∗

(Spin(n) ∧ Spin(m)) ∼= K̃O
−∗

(Spin(n))⊗gKO
−∗

(pt)
K̃O

−∗
(Spin(m)).

From now on, we identify K̃O
−i

(X) with [X, ΩiBO ].

Theorem 3.1. There is a map φi,j : ΩiBO ∧ ΩjBO → Ωi+jBO such that for any CW-

complexes X, X ′ and α ∈ K̃O
−i

(X) and β ∈ K̃O
−j

(X ′),

α⊗̂β = φi,j ◦ (α ∧ β) in K̃O
−(i+j)

(X ∧X ′).

Proof. First we construct φi,j. Let ξn be the universal vector bundle over BO(n) and put
ηn = ξn − n, η∞ = limn→∞ ηn. And set φ0,0 : BO ∧BO → BO as the classifying map of
η∞⊗̂η∞. Let κi : ΣiΩiBO → BO be the map which satisfies

Adiκi ' IdΩiBO .
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Consider the composition of κi ∧ κj and φ0,0:

ΣiΩiBO ∧ ΣjΩjBO
κi∧κj−→ BO ∧BO

φ0,0−→BO .

We define φi,j as

φi,j = Adi+j(φ0,0 ◦ (κi ∧ κj)) : ΩiBO ∧ ΩjBO−→Ωi+jBO .

Now, take α ∈ [X, ΩiBO ] and β ∈ [X ′, ΩjBO ] and see the composition of α ∧ β and
φi,j:

φi,j ◦ (α ∧ β) : X ∧X ′ → ΩiBO ∧ ΩjBO → Ωi+jBO .

Taking Ad−(i+j) of the above composition, we obtain

Ad−(i+j)(φi,j ◦ (α ∧ β)) = (Ad−(i+j)φi,j) ◦ (Σiα ∧ Σjβ)

: Σi+j(X ∧X ′) → Σi+j(ΩiBO ∧ ΩjBO) → BO .

From definition of φi,j, Ad−(i+j)(φi,j ◦ (α ∧ β)) is the composition of following maps:

Σi+j(X ∧X ′)
Σiα∧Σjβ−→ Σi+j(ΩiBO ∧ ΩjBO)

κi∧κj−→ BO ∧BO
φ0,0−→BO . (4)

Lemma 3.2. For any continuous map f : ΣiX → BO,

f ' κi(Σ
iAdif).

Proof. Consider the composition of Adif and identity map of ΩiBO .

X
Adif−→ΩiBO

IdΩiBO−→ ΩiBO .

Taking Ad−i of the above composition, we have

f = Ad−i(IdΩiBO ◦ Adif) = κi ◦ ΣiAdif

: ΣiX
ΣiAdif−→ ΣiΩiBO

κi−→BO .

Q.E.D.
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By (4) and the above lemma, it follows that

Ad−(i+j)(φi,j ◦ (α ∧ β)) ' φ0,0 ◦ (κi ∧ κj) ◦ (Σiα ∧ Σjβ)

' φ0,0 ◦ (κi ◦ Σiα) ∧ (κj ◦ Σjβ)

' φ0,0 ◦ (Ad−iα ∧ Ad−jβ).

Since f ∈ [X, ΩiBO ] corresponds to (Ad−if)∗(η∞) ∈ K̃O
−i

(X), the above equation
says that φi,j ◦ (α ∧ β) corresponds to

(Ad−iα ∧ Ad−jβ)∗φ0,0
∗(η∞) = Ad−iα∗(η∞)⊗̂Ad−jβ∗(η∞).

Therefore we obtain that

α⊗̂β = φi,j ◦ (α ∧ β) in K̃O
−(i+j)

(X ∧X ′).

Q.E.D.

From the above theorem, we can deduce the next theorem.

Theorem 3.3. Assume both n and m are odd. If, for all (i, j) ∈ Z/8Z2 which satisfy
i + j = 2, φi,j

∗(αn+m−2) =
∑

bs ⊗ ct where |bs| = s and |ct| = t and bn−1 ⊗ cm−1 = 0 then
c : Spin(n) ∧ Spin(m) → Spin(n + m− 1) is not null homotopic.

Proof. For any η ∈ K̃O
−2

(Spin(n) ∧ Spin(m)), there exist αa ∈ K̃O
−ia

(Spin(n)) and

βa ∈ K̃O
−ja

(Spin(m)) such that η =
∑

αa⊗̂βa and ia+ja = 2. Since αn+m−2 is primitive,

η∗(αn+m−2) = (
∑

αa⊗̂βa)
∗(αn+m−2) =

∑
(αa⊗̂βa)

∗(αn+m−2)

and by Theorem 3.1,

(α⊗̂β)∗(αn+m−2) = (α ∧ β)∗ ◦ φi,j
∗(αn+m−2).

If the hypothesis is satisfied, η∗(αn+m−2) can not be xn−1⊗ xm−1. Therefore from Propo-
sition 2.2, c is not null homotopic.

Q.E.D.
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4 the case n and m are odd

In this section we investigate the induced cohomology map of φi,j for (i, j) ∈ (Z/8Z)2,
such that, i + j = 2.

We start from the next lemma.

Lemma 4.1. Assume a ∈ Hu(Ωi+jBO) is primitive and φi,j
∗(a) =

∑
s+t=u bs ⊗ ct where

|bs| = s and |ct| = t. Then bs and ct are primitive.

Proof. Since for any α, β, γ ∈ K̃O(X),

(p∗1(α)⊕ p∗2(β))⊗ p∗3(γ) = (p∗1(α)⊗ p∗3(γ))⊕ (p∗2(β)⊗ p∗3(γ))

where pi : X × X × X → X is the projection to i-th component, the next diagram
commutes.

ΩiBO × ΩiBO × ΩiBO
Ωiµ×1 //

(1×T×1)◦(1×1×∆)
²²

ΩiBO × ΩjBO

φ̂i,j

²²

ΩiBO × ΩjBO × ΩiBO × ΩjBO

φ̂i,j×φ̂i,j
²²

Ωi+jBO × Ωi+jBO
Ωi+jµ // BO

Here T is the transposition map, ∆ is the diagonal map and µ : BO ×BO → BO is the
classifying map of η∞ × η∞ over BO ×BO . Further, φ̂i,j is the next composition:

ΩiBO × ΩjBO → ΩiBO ∧ ΩjBO → Ωi+jBO .

Let a ∈ Hu(Ωi+jBO) be a primitive element. Then we have

(1⊗∆∗) ◦ (1⊗ T ∗ ⊗ 1) ◦ (φ̂i,j

∗ ⊗ φ̂i,j

∗
) ◦ µ∗(a)

= (1⊗∆∗) ◦ (1⊗ T ∗ ⊗ 1) ◦ (φ̂i,j

∗ ⊗ φ̂i,j

∗
)(a⊗ 1 + 1⊗ a)

= (1⊗∆∗) ◦ (1⊗ T ∗ ⊗ 1)(
∑

bs ⊗ ct ⊗ 1⊗ 1 +
∑

1⊗ 1⊗ bs ⊗ ct)

= (1⊗∆∗)(
∑

bs ⊗ 1⊗ ct ⊗ 1 +
∑

1⊗ bs ⊗ 1⊗ ct)

= (
∑

bs ⊗ 1⊗ ct +
∑

1⊗ bs ⊗ ct)

= (
∑

(bs ⊗ 1 + 1⊗ bs)⊗ ct).
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Also

(µ∗ ⊗ 1) ◦ φ̂i,j

∗
(a) = (µ∗ ⊗ 1)(

∑
bs ⊗ ct)

=
∑

µ∗(bs)⊗ ct.

The above diagram says that these are the same. Therefore it occurs that µ∗(bs) =
bs ⊗ 1 + 1⊗ bs, that is, bs is primitive. Similarly we can prove that ct is primitive.

Q.E.D.

Theorem 4.2. Let i + j = 2 and n and m be odd. Assume φi,j(αn+m−2) =
∑

bs ⊗ ct

where |bs| = s and |ct| = t. If
(

n+m−2
n−1

) ≡ 0 mod 2, then bn−1 ⊗ cm−1 = 0.

Proof. From assumption, (i, j) is (1, 1), (2, 0), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3) or (0, 2).
From the symmetricity, we shall look in to the cases (i, j) = (1, 1), (2, 0), (3, 7), (4, 6) and
(5, 5).

For φ3,7, φ5,5, the proof is easy. From the assumption, n−1 and m−1 are even and by
Lemma 4.1, bn−1 and cm−1 are primitive. On the other hand, it is known that all of the
non-zero primitive elements of Ω3BO , Ω5BO are in odd degrees.[7] Thus bn−1⊗cm−1 = 0.

To start the proof for φ2,0, we investigate φ0,0
∗.

Let N = 2r, r ∈ N and η ∈ K̃O(BO(N) ∧BO(N)) be the class of

η = (ξN −N)⊗̂(ξN −N).

We calculate the total Stiefel-Whitney class of η in H∗(B(Z/2Z)N∧B(Z/2Z)N) ⊃ H∗(BO∧
BO). Let t1, · · · , tN and t′1, · · · , t′N be the generator of H∗(B(Z/2Z)N ∧ B(Z/2Z)N)
where ti corresponds to the first component and t′i corresponds to the second. Then
wk = σk(t1, · · · , tN) and w′

k = σk(t
′
1, · · · , t′N) (1 ≤ k ≤ N) are the generators of

H∗(BO ∧ BO) where σk is k-th fundamental symmetric polynomial. (We put w0 = 1.)
Also we set S ′l =

∑N
i=1 t′i

l.

Lemma 4.3. The total Stiefel-Whitney class of η satisfies

w(η) = 1 +
N−1∑

k=0

k∑

l=0

(
N−k

l

)
wN−k ⊗ S ′l modulo (w1 ⊗ 1, w2 ⊗ 1, · · · , wN ⊗ 1)2

in H∗(BO(N) ∧BO(N)) for ∗ < N .
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Proof. Since
η = ξN⊗̂ξN − ξN⊗̂N −N⊗̂ξN + N⊗̂N,

we can see that

w(η) =
∏

1≤i≤N, 1≤j≤N

(1 + ti + t′j)
∏

1≤i≤N

(1 + ti)
−N

∏
1≤j≤N

(1 + t′j)
−N .

Here in the part of degrees less than N , (1+ti)
−N = (1+ti

N)−1 = 1 and also (1+t′j)
−N = 1.

Therefore modulo
⊕

i≥N Hi(B(Z/2Z)N ×B(Z/2Z)N), we obtain that

w(η) =
∏

1≤i≤N, 1≤j≤N

(ti + 1 + t′j)

=
N∏

j=1

(
N∑

k=0

wk(1 + t′j)
N−k)

=
N∏

j=1

(1 +
N∑

k=1

N−k∑

l=0

(
N−k

l

)
wkt

′
j
l
).

We proceed the calculation modulo (w1 ⊗ 1, w2 ⊗ 1, · · · , wN ⊗ 1)2 and obtain

w(η) ≡ 1 +
N∑

k=1

N−k∑

l=1

(
N−k

l

)
wkS

′
l

≡ 1 +
∑

1≤k,1≤l, k+l≤N

(
N−k

l

)
wkS

′
l.

Q.E.D.

Lemma 4.4. Let k, l, r ∈ N. If 2r > k + l, then
(
2r−k

l

) ≡ (
k+l−1

l

)
mod 2.

Proof. We set the binary expansion of k − 1, l as

k − 1 =
∑

0≤i≤r−1

εi2
i, l =

∑
0≤i≤r−1

δi2
i.

Then we have (
2r−k

l

)
=

(
(2r−1)−(k−1)

l

) ≡
∏

0≤i≤r−1

(
1−εi

δi

)
.

Therefore
(
2r−k

l

) ≡ 0 if and only if, for some i,
(
1−εi

δi

) ≡ 0, i.e., εi = δi = 1.
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Assume, for some i (0 ≤ i ≤ r − 1), εi = δi = 1. Then let i0 be the smallest such a
number. Then i0-th coefficient of the binary expansion of k + l − 1 is 0, while δi0 = 1.
Thus we have

(
k+l−1

l

) ≡ 0.
Vice versa if, for any i (0 ≤ i ≤ r − 1), not both εi and δi are 1, then

(
k+l−1

l

) ≡
∏

0≤i≤r−1

(
εi+δi

δi

) 6≡ 0.

Therefore
(
2r−k

l

) ≡ (
k+l−1

l

)
mod 2.

Q.E.D.

Since φ0,0 is the classifying map of η∞⊗̂η∞, Lemma 4.3 implies that

φ0,0
∗(wi) =

∑

k+l=i

(
2r−k

l

)
wk ⊗ S ′l

=
∑

k+l=i

(
k+l−1

l

)
wk ⊗ S ′l modulo (w1 ⊗ 1, w2 ⊗ 1, w3 ⊗ 1, · · · )2 (5)

where r is sufficiently large.
Therefore

(κ2 ∧ IdBO)∗ ◦ φ0,0
∗(wi) =

∑

k+l=i, k:even

(
k+l−1

l

)
Σ2ak−2 ⊗ S ′l,

since

κ2
∗(wk) =

{
Σ2ak−2 k : even
0 k : odd

and κ2
∗(decomposable element) = 0.

From definition, φ2,0 = Ad2(κ2 ∧ Id ◦ φ0,0) and then we have

φ2,0
∗(a4i+2) =

∑

k+l=4i+2, k:even

(
k+l

l

)
ak ⊗ Sl, (6)

here we remark that
(

k+l+1
l

)
=

(
k+l

l

)
when k and l are even. From (6), and since a4k = a2k

2,
it occurs that

φ2,0
∗(a2p(4i+2)) =

∑

k+l=4i+2, k:even

(
k+l

l

)
ak

2p ⊗ Sl
2p

,
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Thus the coefficient of bn−1 ⊗ cm−1 in φ2,0
∗(an+m−2) is 0 when

(
n+m−2

n−1

)
= 0 and the

statement is true for φ2,0.

Second case is φ1,1. Consider the composition of following maps.

ΣΩBO ∧ ΣΩBO
κ1∧κ1−→ BO ∧BO

φ0,0−→BO .

From (5) and since κ1
∗(decomposable element) = 0 and

κ1
∗(wk) = Σxk−1

κ1
∗(Sl) =

{
Σxl−1 k : odd
0 k : even,

the induced cohomology map of this composition can be obtained as

(κ1 ∧ κ1)
∗ ◦ φ0,0

∗(wi) = (κ1 ∧ κ1)
∗(

∑

k+l=i

(
k+l−1

l

)
Sl ⊗ w′

k) (7)

=
∑

k+l=i, l: odd

(
k+l−1

l

)
Σxl−1 ⊗ Σxk−1. (8)

Here we remark that
(

k+l−1
l

)
= 0 when l is odd and k is even. Thus it occurs that

(κ1 ∧ κ1)
∗ ◦ φ0,0

∗(wi) =
∑

k+l=i, l: odd, k: odd

(
k+l−1

l

)
Σxl−1 ⊗ Σxk−1. (9)

Similarly as the case of φ2,0, φ1,1 = Ad2(κ1 ∧ κ1 ◦ φ0,0) and from (9) we have

φ1,1
∗(α4i+2) =

∑

k+l=4(i+1), l: odd, k: odd

(
k+l−1

l

)
xl−1 ⊗ xk−1

=
∑

k+l=4i+2, l: even, k: even

(
k+l

l

)
xl ⊗ xk. (10)

And also

φ1,1
∗(α2p(4i+2)) =

∑

k+l=4i+2, l: even, k: even

(
k+l

l

)
xl

2p ⊗ xk
2p

. (11)

Thus the coefficient of bn−1 ⊗ cm−1 in φ1,1
∗(an+m−2) is also 0 when

(
n+m−2

n−1

)
= 0 and

the statement is true for φ1,1.
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The final case is φ4,6. Let ξR
n , ξC

n and ξH
n be the universal bundle over BO(n), BU(n)

and BSp(n) respectively and put

ηR
n = ξR

n − n, ηC
n = ξC

n − n, ηH
n = ξH

n − n.

and
ηR
∞ = lim

n→∞
ξR
n − n, ηC

∞ = lim
n→∞

ξC
n − n, ηH

∞ = lim
n→∞

ξH
n − n.

Also set c be the classifying map of (ηR
∞)C, complexification of ηR

∞, c′ be the classifying
map of ηH

∞ as a complex vector bundle and ψ be the classifying map of ηC
∞⊗̂ηC

∞ over
BU ∧BU .

We start from the next lemma.

Lemma 4.5. The next diagram commutes.

BSp ∧BSp c′∧c′ //

φ4,4
²²

BU ∧BU

ψ

²²
BO

c // BU

Proof. Consider the next composition:

Σ4BSp ∧ Σ4BSp
κ4∧κ4−→ BO ∧BO

φ0,0−→BO
c−→BU .

Here in K-theory, c∗(ηC
∞) = (ηR

∞)C and φ0,0
∗((ηR

∞)C) = (ηR
∞)C⊗̂(ηR

∞)C. Also it is known
that κ4

∗((ηR
∞)C) = (ζH − H)⊗̂CηH

∞ where ζH is the H canonical line bundle over HP 1.
Therefore above composition pulls back ηC

∞ to (ζH −H)⊗̂C(ζH −H)⊗̂CηH
∞⊗̂CηH

∞.
On the other hand consider the next composition:

Σ8BSp ∧BSp
Σ8(c′∧c′)−→ Σ8BU ∧BU

Σ8ψ−→Σ8BU
κ′8−→BU .

Here κ′8 is defined as follows. From Bott Periodicity, we know that Ω2BU ∼= BU × Z.
Thus there exists a map κ′2i : Σ2iBU → BU which satisfies Ad2iκ′2i is the inclusion map
BU → Ω2iBU . One can easily verify that

κ′2 ◦ Σ2κ′2 ◦ · · ·Σ2i−2κ′2 ' κ′2i

and it is known that in K-theory κ′2
∗(ηC

∞) = (ζC − C)⊗̂ηC
∞ where ζC is the canonical

line bundle over CP 1. Therefore κ′8
∗ = (ζC − C)4⊗̂ηC

∞. Now we can see that the above
composition pulls back ηC

∞ to (ζC − C)4⊗̂ηH
∞⊗̂CηH

∞.

13



Since K̃−4(pt) = Z and the second Chern class of −(ζH −H) and (ζC −C)2 coincide,
we see that the above two compositions are homotopic each other.

Take the Ad8 of two compositions and we obtain

c ◦ φ4,4 ' ψ ◦ c′

Q.E.D.

Refer to the diagram of Lemma 4.5. We want to calculate φ4,4(wi). As we have done

in the proof of Lemma 4.3, let N = 2r, r ∈ N and θ ∈ K̃(BU(2N)×BU(2N)) be the class
of θ = (ξC

2N − 2N)⊗̂(ξC
2N − 2N) where ξC

2N is the universal vector bundle over BU(2N).
Also let ψN be the classifying map of θ.

First, we calculate the total Chern class of θ in H∗(BT 2N × BT 2N) ⊃ H∗(BU(2N)×
BU(2N)). Let t1, · · · , t2N , t′1, · · · , t′2N ∈ H∗(BT 2N × BT 2N) be the generators as usual.
Then in the part of degree less than 4N ,

ψN
∗(1 +

∞∑
i=1

ci) =
∏

1≤i≤2N,1≤j≤2N

(1 + ti + t′j).

Now we proceed the calculations of (c′ ∧ c′)∗ψN
∗(1 +

∑∞
i=1 ci) in H∗(BTN × BTN) ⊃

H∗(BSp(N)×BSp(N)). Let s1, · · · , sN , s′1, · · · , s′N ∈ H∗(BTN×BTN) be the generators.
Then we can see

(c′ ∧ c′)∗ψN
∗(1 +

∞∑
i=1

ci) = (c′ ∧ c′)∗(
∏

1≤i≤2N,1≤j≤2N

(1 + ti + t′j))

=
∏

1≤i≤N,1≤j≤N

(1 + si + s′j)(1 + si − s′j)(1− si + s′j)(1− si − s′j)

=
∏

1≤i≤N,1≤j≤N

(1 + si + s′j)
4

= {
∏

1≤i≤N, 1≤j≤N

(1 + si
2 + s′j

2
)}2.

On the other hand, considering H∗(BSp(N)) ⊂ H∗(BSp), in the part of degree less

14



than 4N ,

(c′ ∧ c′)∗ψN
∗(1 +

∞∑
i=1

ci) = φ4,4
∗c∗(1 +

∞∑
i=1

ci)

= φ4,4
∗(1 +

∞∑
i=1

w2
i )

= φ4,4
∗(1 +

∞∑
i=1

wi)
2

Since H∗(BSp ∧ BSp) is a subalgebra of a polynomial algebra, the square of any
element in H∗(BSp ∧BSp) does not vanishes. Therefore

φ4,4
∗(1 +

∞∑
i=1

wi) = {
∏

1≤i≤N,1≤j≤N

(1 + si
2 + s′j

2
)}2.

in the part of degree less than 2N .
We set q′k = σk(s

′
1
2, · · · , s′N

2) (1 ≤ k ≤ N) which are the generators of H∗(BSp(N))
and Ql =

∑N
i=1 si

2l which is the primitive element of H∗(BSp(N)). Now we have in the
part of degrees less than 2N

φ4,4
∗(1 +

∞∑
i=1

wi) =
∏

1≤i≤N,1≤j≤N

(1 + si
2 + s′j

2
)

=
N∏

i=1

(
N∑

k=0

(1 + si
2)kq′N−k)

=
N∏

i=1

(1 +
N−1∑

k=0

k∑

l=0

(
k
l

)
si

2lq′N−k)

Now we proceed the calculations modulo (q′1, · · · , q′N)2.

φ4,4
∗(1 +

∞∑
i=1

wi) ≡ 1 +
N−1∑

k=0

k∑

l=1

(
k
l

)
Qlq

′
N−k

≡ 1 +
N∑

k=1

N−k∑

l=1

(
N−k

l

)
Qlq

′
k

≡ 1 +
N∑

i=1

∑

1≤k,1≤l,k+l=i

(
N−k

l

)
Qlq

′
k
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This leads us to the next lemma.

Lemma 4.6. Modulo (1⊗ q1, 1⊗ q2, 1⊗ q3, · · · )2,

φ4,4
∗(wi) =

{ ∑
1≤k,1≤l,k+l=j

(
k+l−1

l

)
Ql ⊗ qk i = 4j

0 i 6≡ 0 mod 4

where H∗(BSp) = Z/2Z[q1, q2, q3, · · · ] and Ql ∈ H∗(BSp) is the primitive element of
degree 4l.

Let κ′ : Σ2Ω6BO → Ω4BO be the map which satisfies Ad2(κ′) = IdΩ6BO . Then it
can be easily verified that Ad2(φ4,4 ◦ IdΩ4BO ∧ κ′) = φ4,6. Since

κ′∗(ql) = Σ2b4l−2,

where H∗(Ω2BSp) =
∧

(b2, b4, b6, · · · ) and b4i−2 is primitive, it occurs that

(IdΩ4BO ∧ κ′)∗φ4,4
∗(w4i) =

∑

1≤k,1≤l,k+l=i

(
k+l−1

l

)
Ql ⊗ Σ2b4k−2

and
φ4,6

∗(a4i−2) =
∑

1≤k,1≤l,k+l=j

(
k+l−1

l

)
Ql ⊗ b4k−2.

Remark that
(

k+l−1
l

)
=

(
4k+4l−4

4l

)
=

(
4k+4l−2

4l

)
and

φ4,6
∗(a2p(4i−2)) =

∑

1≤k,1≤l,k+l=j

(
4k+4l−2

4l

)
Ql

2p ⊗ b4k−2
2p

.

Therefore the statement is also true for φ4,6.

Q.E.D.(Theorem 4.2)

From Theorem 3.3 and Theorem 4.2, the next theorem follows.

Theorem 4.7. Assume neither n − 1 nor m − 1 is a power of 2 and both n and m are
odd. If

(
n+m−2

n−1

) ≡ 0 mod 2, (n,m) is Spin-regular.
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5 the case n and m are even

In this section we use integral cohomology. Consider the next diagram.

Sn−1
ĩn //

p′n
²²

Spin(n)
πn //

pn

²²

Sn−1

∼=
²²

RPn−1
in // SO(n)

π′n // Sn−1

Here πn, π′n is the map obtained from Spin(n) → Spin(n)/Spin(n− 1) = Sn−1 and
SO(n) → SO(n)/SO(n− 1) = Sn−1 respectively. Also in is the inclusion map defined as
follows. Let l ∈ RPn−1 be a line and let e ∈ l be a unit vector. Then in(l) = i′n(l0)i

′
n(l)

where i′n(l)(v) = v−2(v, e)e and l0 is the base point of RPn−1. We set p′n : Sn−1 → RPn−1

be the usual covering map then there is a map ĩn which makes diagram commutative.
Moreover, when n = 4, πn has a section ε : Sn−1 → Spin(n), that is, πn ◦ ε = Id.

We set cn−1 as the generator of H∗(Sn−1;Z) and take δ ∈ H∗(Spin(n) ∧ Spin(m);Z)
as δ = (πn ∧ πm)∗(cn−1 ⊗ cm−1).

Lemma 5.1. If n and m are even and neither n nor m is 4,

Hn+m−2(Spin(n) ∧ Spin(m);Z) = 〈δ〉 ⊕Ker(̃in ∧ ĩm)∗.

Proof. Since n is even, in
∗π′n

∗(cn−1) is the generator of Hn−1(RPn−1;Z) ∼= Z. Therefore

ĩ∗nπn
∗(cn−1) = p′n

∗
in
∗π′n

∗
(cn−1) = 2cn−1, (12)

that is, ĩn ∧ ĩm
∗
(δ) = 4cn−1 ⊗ cm−1.

Because p′n
∗ : Hn−1(RPn−1;Z/2Z) → Hn−1(Sn−1;Z/2Z) is a 0-map and ĩ∗n ◦ pn

∗ =
p′n
∗ ◦ in

∗, we have ĩ∗n ◦ pn
∗ = 0 in mod 2 cohomology. Further, since, when n 6= 4, pn

∗ :
Hn−1(SO(n);Z/2Z) → Hn−1(Spin(n);Z/2Z) is epic, this implies that ĩ∗n : Hn−1(Spin(n);Z/2Z) →
Hn−1(Sn−1;Z/2Z) is also a 0-map. Therefore Imĩ∗n ⊂ 〈2cn−1〉 in integral cohomology.

Now we obtain that Im(̃in ∧ ĩm)∗ = 〈4cn−1 ⊗ cm−1〉 = 〈(̃in ∧ ĩm)∗(δ)〉 and from the
freeness of Hn+m−2(Sn+m−2;Z) the statement follows.

Q.E.D.

Lemma 5.2. If n = 4 and m are even and m 6= 4,

Hn+m−2(Spin(n) ∧ Spin(m);Z) = 〈δ〉 ⊕Ker(ε ∧ ĩm)∗.
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Proof. From (12) and ε∗π4
∗(c3) = c3,

(ε ∧ ĩm)∗(δ) = 2cn−1 ⊗ cm−1.

As seen in the proof of previous lemma, Imĩ∗m ⊂ 〈2cm−1〉 in integral cohomology and
since ε is a section, Imε∗ = 〈c3〉.

Now it follows that Im(ε ∧ ĩm)∗ = 〈2c3 ⊗ cm−1〉 = 〈(ε ∧ ĩm)∗(δ)〉 and from the freeness
of Hn+m−2(Sn+m−2;Z) the statement follows.

Q.E.D.

Theorem 5.3. Assume neither n− 1 nor m− 1 is a power of 2, both n and m are even,
n + m ≡ 0 mod 4 and n + m ≥ 16. Then (n,m) is Spin-regular.

Proof. We use Proposition 2.2. Let x : Spin(n)∧Spin(m) → ΩSpin satisfies x∗(αn+m−2) =

xn−1 ⊗ xm−1 in mod 2 cohomology. Then there exists η ∈ K̃O(Σ2Spin(n) ∧ Spin(m))
which satisfies

wn+m(η) = Σ2xn−1 ⊗ xm−1. (13)

Here, since Pontrjagin square acts trivially in H∗(Σ2Spin(n) ∧ Spin(m);Z), by the
second formula of Wu [12],

ρ4(Pn+m
4

(η)) = w′
n+m(η), (14)

where w′
n+m is the image of wn+m under the coefficient monomorphism Z/2Z → Z/4Z

and ρ4 is the map of mod 4 reduction.
When neither n nor m is 4, from (13), (14) and Lemma 5.1, we can see that

Pn+m
4

(η) = Σ2((4k + 2)δ + α),

where α ∈ Ker(̃in ∧ ĩm)∗ and we obtain

Pn+m
4

(Σ2(̃in ∧ ĩm)∗(η)) = (16k + 8)cn+m.

When n = 4 and m 6= 4, (13), (14) and Lemma 5.2 imply that

Pn+m
4

(η) = Σ2((4k + 2)δ + β),

where β ∈ Ker(ε ∧ ĩm)∗ and we have

Pn+m
4

(Σ2(ε ∧ ĩm)∗(η)) = (8k + 4)cn+m.

But for the generator η0 of K̃O(Sn+m), Pn+m
4

(η0) is divisible by (n+m
2
− 1)!. [1] When

n + m ≥ 16 this is a contradiction and the statement follows.
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Q.E.D.

Theorem 5.4. Assume neither n− 1 nor m− 1 is a power of 2, both n and m are even.
If n + m = 12 or n + m ≡ 2 mod 4 . Then (n,m) is Spin-regular.

Proof. We use Proposition 2.2. Let x : Spin(n) ∧ Spin(m) → ΩSpin be the arbitrary
continuous map.

When n+m ≡ 2 mod 4, that is, n+m−2 is divisible by 4, x∗(αn+m−2) = x∗(αn+m−2
2

)2

in mod 2 cohomology. Thus x∗(αn+m−2) can be written in the form
∑

α⊗β where α and
β are decomposable. Therefore x∗(αn+m−2) 6= xn−1 ⊗ xm−1.

Now let n + m = 12 and n ≤ m. When n 6= 4, x∗(α6) = x3⊗ x3 or 0 and when n = 4,
x∗(α6) = z ⊗ x3, x3 ⊗ x3 or 0. We can see

Sq2x∗(α6) = x∗(Sq2α6) = x∗(α8) = x∗(α2)
4 = 0

while
Sq2x3 ⊗ x3 = x5 ⊗ x3 + x3 ⊗ x5,

Sq2z ⊗ x3 = z ⊗ x5.

So x∗(α6) = 0 and we have

x∗(α10) = x∗(Sq4α6) = Sq4x∗(α6) = 0.

Q.E.D.

From Proposition 2.2, Theorems 4.7, 5.3, 5.4, we finally obtain Theorem 1.3.

6 (3, 4k + 1) is Spin-irregular

In this section we shall give the proof of Theorem 1.4 which requires that (3, 4k + 1) is
Spin-irregular.

Since there are embeddings Spin(3) → Spin(4k + 3), Spin(4k + 1) → Spin(4k + 3)
where any element of Spin(3) and any element of Spin(4k) ⊂ Spin(4k + 1) exactly
commute in Spin(4k + 3). Let A ∈ Spin(3), B ∈ Spin(4k + 1), C ∈ Spin(4k) ⊂
Spin(4k + 1). Then A(BC)A−1(BC)−1 = ABCA−1C−1B−1 = ABA−1B−1 and the com-
mutator of A and B is invariant under the right translation of Spin(4k) on B.

Therefore there exists a map c′ : Spin(3) ∧ (Spin(4k + 1)/Spin(4k)) → Spin(4k + 3)
such that c′ ◦ (1 ∧ π4k+1) ' c. See the diagram below. Remark that Spin(3) ∼= S3 and
Spin(4k + 1)/Spin(4k) ∼= S4k.
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ΩSO/SO(4k + 3)

δ
²²

Spin(3) ∧ Spin(4k + 1) c //

1∧π4k+1

²²

Spin(4k + 3)

i
²²

S3 ∧ S4k

λ

77ooooooooooooooooooooooooooooo

c′
33gggggggggggggggggggggg

Spin

In the above diagram ΩSO/SO(4k + 3) → Spin(4k + 3) → Spin is a fibration and
i ◦ c′ is null homotopic. So there exists a map λ : S4k+3 → ΩSO/SO(4k + 3), such that
δ ◦ λ ' c′.

Since π4k+4(SO/SO(4k + 3)) ∼= 0 ([10]), π4k+3(ΩSO/SO(4k + 3)) ∼= 0 and λ is null
homotopic.

Thus c ' δ ◦ λ ◦ (1 ∧ π4n+1) ' ∗ and Theorem 1.4 is proved.
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