ADJOINT ACTION ON HOMOLOGY MOD 2 OF E_8 ON ITS LOOP SPACE

HIROAKI HAMANAKA* DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY.

1. Introduction

Assume G is a compact, connected, simply connected Lie group. The space of free loops on G is called LG(G) the free loop group of G, whose multiplication is defined as

$$\varphi \cdot \psi(t) = \varphi(t) \cdot \psi(t).$$

Let ΩG be the space of based loops on G, whose base point is the unit e. Then LG(G) has ΩG as its normal subgroup and

$$LG(G)/\Omega G \cong G.$$

Identifying elements of G with constant maps from S^1 to G, LG (G) is equal to the semidirect product of G and ΩG . Thus the mod p homology of LG (G) is determined by the mod p homology of G and ΩG and the algebra structure of $H_*(LG$ (G); $\mathbf{Z}/p\mathbf{Z}$) depends on $H_*(\mathrm{ad}; \mathbf{Z}/p\mathbf{Z})$ where

ad :
$$G \times \Omega G \rightarrow \Omega G$$

is the adjoint map.

In [4] some properties of ad_* are studied and it is showed that $\mathrm{H}_*(\mathrm{ad}; \mathbf{Z}/p\mathbf{Z})$ is equal to $\mathrm{H}_*(p_2; \mathbf{Z}/p\mathbf{Z})$ where p_2 is the second projection if and only if $\mathrm{H}^*(G; \mathbf{Z})$ is p-torsin free. For an exceptional Lie group G, $\mathrm{H}^*(G; \mathbf{Z})$ has p-torsion when

$$G = G_2, F_4, E_6, E_7, E_8 \text{ for } p = 2, \\ G = F_4, E_6, E_7, E_8 \text{ for } p = 3, \\ G = E_8 \text{ for } p = 5.$$

The case where p=2 and $G \neq E_8$ is discussed in [6] and the case of p=3,5 is studied in [8, 7] respectively. In this paper we offer the result of the remained case, $(G,p)=(E_8,2)$. The result is showed in Theorem 4.1.

^{*}PARTIALLY SUPPORTED BY JSPS RESEARCH FELLOWSHIPS FOR YOUNG SCIENTISTS.

This paper is organized as follows. In §2 we refer to the result of the algebra structure of $H^*(G; \mathbf{Z}/2\mathbf{Z})$ and $H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$ and the Hopf algebra structure and cohomology operations of them . And in §3 we introduce the adjoint action and observe its property. Finally in §4 the induced homomorphism from the adjoint action of E_8 is determined by using the result of E_7 and cohomology operations.

The author is the most grateful to Professor Akira Kono for his advices and encouragements.

2.
$$H^*(G; \mathbf{Z}/2\mathbf{Z})$$
 and $H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$

We refer to the result of [1] and [2] about $H^*(G; \mathbf{Z}/2\mathbf{Z})$ for $G = E_7$ and E_8 .

Theorem 2.1.

$$H^{*}(E_{7}; \mathbf{Z}/2\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}[x_{3}, x_{5}, x_{9}]/(x_{3}^{4}, x_{5}^{4}, x_{9}^{4}) \otimes \bigwedge(x_{15}, x_{17}, x_{23}, x_{27})$$

$$H^{*}(E_{8}; \mathbf{Z}/2\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}[x_{3}, x_{5}, x_{9}, x_{15}]/(x_{3}^{16}, x_{5}^{8}, x_{9}^{4}, x_{15}^{4}) \otimes \bigwedge(x_{17}, x_{23}, x_{27}, x_{29})$$

where x_i is a generator of degree i. Moreover there is a homomorphism

$$E_7 \rightarrow E_8$$

whose induced homomorphism maps x_i in $H^*(E_8; \mathbf{Z}/2\mathbf{Z})$ into x_i in $H^*(E_7; \mathbf{Z}/2\mathbf{Z})$.

Theorem 2.2. The x_i 's in Theorem 2.1 can be chosen so as to satisfy

$$x_5 = \operatorname{Sq}^2 x_3,$$

$$x_9 = \operatorname{Sq}^4 x_5,$$

$$\overline{\psi}(x_3) = \overline{\psi}(x_5) = \overline{\psi}(x_9) = 0$$

and the coproduct of x_{15} is

$$\overline{\psi}(x_{15}) = x_3^2 \otimes x_9 + x_5^2 \otimes x_5 + x_3^4 \otimes x_3.$$

The algebra structure of $H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$ can be determined as an application of the Eilenberg-Moore spectral sequence. And the Hopf algebra structures and the action of cohomology operations which acts on homology dually was determined by A.Kono and K.Kozima. See [5, 3] for detail.

Theorem 2.3.

$$H_*(\Omega E_7; \mathbf{Z}/2\mathbf{Z}) = \bigwedge (b_2, b_4, b_8) \otimes \mathbf{Z}/2\mathbf{Z}[b_{10}, b_{14}, b_{16}, b_{18}, b_{22}, b_{26}, b_{34}]$$
 $H_*(\Omega E_8; \mathbf{Z}/2\mathbf{Z}) = \bigwedge (b_2, b_4, b_8, b_{14}) \otimes \mathbf{Z}/2\mathbf{Z}[b_{16}, b_{22}, b_{26}, b_{28}, b_{34}, b_{38}, b_{46}, b_{58}]$
where b_i is a generator of degree i .

Theorem 2.4. The coproduct of $H_*(\Omega E_8; \mathbb{Z}/2\mathbb{Z})$ is given as

$$\overline{\phi}(b_i) = 0 \text{ for } i = 2, 14, 22, 26, 34, 38, 46, 58,
\overline{\phi}(b_4) = b_2 \otimes b_2,
\overline{\phi}(b_8) = b_2 \otimes b_2 b_4 + b_4 \otimes b_4 + b_2 b_4 \otimes b_2,
\overline{\phi}(b_{16}) = b_2 \otimes b_2 b_4 b_8 + b_4 \otimes b_4 b_8 + b_2 b_4 \otimes b_2 b_8 + b_8 \otimes b_8
+ b_2 b_8 \otimes b_2 b_4 + b_4 b_8 \otimes b_4 + b_2 b_4 b_8 \otimes b_2,
\overline{\phi}(b_{28}) = b_{14} \otimes b_{14}.$$

3. Adjoint action

Let $\operatorname{Ad}: G \times G \to G$ and $\operatorname{ad}: G \times \Omega G \to \Omega G$ be the adjoint action of a Lie group G defined by $\operatorname{Ad}(g,h) = ghg^{-1}$ and $\operatorname{ad}(g,l)(t) = gl(t)g^{-1}$ where $g,h \in G,\ l \in \Omega G$ and $t \in [0,1]$. These induce the homomorphisms

$$Ad_*: H_*(G; \mathbf{Z}/2\mathbf{Z}) \otimes H_*(G; \mathbf{Z}/2\mathbf{Z}) \to H_*(G; \mathbf{Z}/2\mathbf{Z})$$

and

$$\mathrm{ad}_*: \mathrm{H}_*(G; \mathbf{Z}/2\mathbf{Z}) \otimes \mathrm{H}_*(\Omega G; \mathbf{Z}/2\mathbf{Z}) \to \mathrm{H}_*(\Omega G; \mathbf{Z}/2\mathbf{Z}).$$

Put $y*y' = \mathrm{Ad}_*(y \otimes y')$ and $y*b = \mathrm{ad}_*(y \otimes b)$ where $y, y' \in \mathrm{H}_*(G; \mathbf{Z}/2\mathbf{Z})$ and $b \in \mathrm{H}_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$. Following are the dual statement of the result in [4].

Theorem 3.1. For $y, y', y'' \in H_*(G; \mathbb{Z}/2\mathbb{Z})$ and $b, b' \in H_*(\Omega G; \mathbb{Z}/2\mathbb{Z})$

- (i) 1 * y = y, 1 * b = b.
- (ii) y*1 = 0, if |y| > 0, whether $1 \in H_*(G; \mathbb{Z}/2\mathbb{Z})$ or $1 \in H_*(\Omega G; \mathbb{Z}/2\mathbb{Z})$.
- (iii) (yy') * b = y * (y' * b).
- (iv) $y * (bb') = \sum (y' * b)(y'' * b')$ where $\Delta_* y = \sum y' \otimes y''$.
- (v) $\sigma(y*b) = y*\sigma(b)$ where σ is the homology suspension.
- (vi) $\operatorname{Sq}_{*}^{n}(y * b) = \sum_{i} (\operatorname{Sq}_{*}^{i} y) * (\operatorname{Sq}_{*}^{n-i} b).$ $\operatorname{Sq}_{*}^{n}(y * y') = \sum_{i} (\operatorname{Sq}_{*}^{i} y) * (\operatorname{Sq}_{*}^{n-i} y').$

(vii)

$$\Delta_*(y * b) = (\Delta_* y) * (\Delta_* b)$$
$$= \sum (y' * b') \otimes (y'' * b'')$$

where $\Delta_* y = \sum y' \otimes y''$ and $\Delta_* b = \sum b' \otimes b''$. Also

$$\overline{\Delta}_*(y*b) = (\Delta_* y) * (\overline{\Delta}_* b).$$

(viii) If b is primitive then y * b is primitive.

Let $y_{2i} \in H_*(G; \mathbf{Z}/2\mathbf{Z})$ be the dual of x_i^2 for i=3,5,9,15 and y_{12}, y_{24}, y_{20} be the dual of x_3^4, x_3^8, x_5^4 respectively with respect to the monomial basis. Also in $H_*(E_8; \mathbf{Z}/2\mathbf{Z})$ we put as

$$y^m = y_6^{m_1} y_{12}^{m_2} y_{24}^{m_3} y_{10}^{m_4} y_{20}^{m_5} y_{18}^{m_6} y_{30}^{m_7}$$

for $m = (m_1, m_2, \dots, m_7) \in \mathbf{Z}/2\mathbf{Z}^7$. Then the result of [4] implies the next theorem. See [6].

Theorem 3.2. We define a submodule A of $H_*(G; \mathbb{Z}/2\mathbb{Z})$ as

$$A = \bigwedge(y_6, y_{10}, y_{18})$$
 for $G = E_7$
 $A = \langle y^m \text{ for all } m \in \mathbb{Z}/2\mathbb{Z}^7 \rangle$ for $G = E_8$.

Then there exist a retraction $p: H_*(G; \mathbf{Z}/2\mathbf{Z}) \to A$ and the following diagram commutes.

$$H_*(G; \mathbf{Z}/2\mathbf{Z}) \otimes H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$$
 $\xrightarrow{ad_*}$ $H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$ $\downarrow p \otimes 1$ $\downarrow ad_*$ $A \otimes H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$

Remark

1. The submodule A has an algebra structure induced from that of $H_*(G; \mathbf{Z}/2\mathbf{Z})$. When $G = E_7$, A is a commutative exterior algebra over $\mathbf{Z}/2\mathbf{Z}$. But when $G = E_8$, A is a non-commutative algebra over $\mathbf{Z}/2\mathbf{Z}$. In fact A is the dual of $\bigwedge(x_3^2, x_5^2, x_9^2)$ for $G = E_7$ and is the dual of $\mathbf{Z}/2\mathbf{Z}[x_3^2, x_5^2, x_9^2, x_{15}^2]/(x_3^{16}, x_5^8, x_9^4, x_{15}^4)$ for $G = E_8$. Thus we can easily see that, for $G = E_8$, A is generated by $\{y_6, y_{12}, y_{24}, y_{10}, y_{20}, y_{18}\}$ as algebra and the fundamental relations are

$$y_{2i}^2 = 0$$
 for $i = 3, 6, 12, 5, 10, 9,$

 $[y_{2i}, y_{2j}] = 0$ for $(i, j) \neq (6, 9), (9, 6), (5, 10), (10, 5), (3, 18), (18, 3)$ and

$$[y_6, y_{24}] = [y_{10}, y_{20}] = [y_{12}, y_{18}] (= y_{30}).$$

2. By Theorem 3.1 (iv) and Theorem 3.2 we see that for $b \in H_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$ and i = 3, 5, 9

$$y_{2i} * b^2 = (y_{2i} * b)b + (y_i * b)^2 + b(y_{2i} * b)$$

= 0

where y_i is the dual of x_i for i = 3, 5, 9 with respect to the monomial basis.

3. By theorem 3.1 and 3.2, when $G = E_8$, if $y_i * b_j$ is determined for i = 6, 12, 24, 10, 20, 18 and $b_j \in H_*(G; \mathbf{Z}/2\mathbf{Z})$, then the map $H_*(\mathrm{ad}; \mathbf{Z}/2\mathbf{Z})$ is determined completely.

4. Adjoint action on ΩE_8

The next theorem is the main result of this paper.

Theorem 4.1. For $j \in \{6, 12, 24, 10, 20, 18\}$ and $b_i \in H_*(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$, $y_j * b_i$ is given by the following tables.

b_j	$y_6 * b_j$	$y_{10} * b_j$	$y_{18} * b_j$
b_2	0	0	0
b_4	0	b_{14}	b_{22}
b_8	b_{14}	$b_4 b_{14}$	$b_{26} + b_4 b_{22}$
b_{14}	0	0	b_{16}^2
b_{16}	$b_{22} + b_8 b_{14}$	$b_{26} + b_4 b_8 b_{14}$	$b_{34} + b_8 b_{26} + b_4 b_8 b_{22}$
b_{22}	b_{14}^2 b_{16}^2	b_{16}^2	0
b_{26}	b_{16}^2	0	b_{22}^2
b_{28}	b_{34}	b_{38}	$b_{16}^2b_{14} + b_{46}$
b_{34}	0	b_{22}^2	$ b_{26}^2 $
b_{38}	b_{22}^2	0	b_{28}^2
b_{46}	b_{26}^2	b_{28}^2	b_{26}^2 b_{28}^4 b_{16}^4 b_{38}^4
b_{58}	$\begin{array}{c} b_{22}^2 \\ b_{26}^2 \\ b_{16}^4 \end{array}$	b_{28}^2 b_{34}^2	b_{38}^2
b_{j}	$y_{12} * b_j$	$y_{20} * b_j$	$y_{24} * b_j$
b_2	b_{14}	b_{22}	b_{26}
b_4	b_2b_{14}	$b_{2}b_{22}$	$b_{28} + b_2 b_{26}$
b_8	$b_2b_4b_{14}$	$b_{28} + b_2 b_4 b_{22}$	$b_4b_{28} + b_2b_4b_{26}$
b_{14}	0	b_{34}	b_{38}
b_{16}	$b_{28} + b_2 b_4 b_8 b_{14}$	$b_8b_{28} + b_2b_4b_8b_{22}$	$b_4b_8b_{28} + b_2b_4b_8b_{26}$
b_{22}	b_{34}	0	b_{46}
b_{26}	b_{38}	b_{46}	0
b_{28}	0	0	b_{26}^2
b_{34}	0	0	b_{58}
b_{38}	0	b_{58}	0
b_{46}	b_{58}	0	0

Remark The action of cohomology operations on $H_*(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$ is determined by A.Kono and K.Kozima in [3]. But we do not use them. We use the Hopf algebra structure of $H_*(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$ and the result in $H_*(\Omega E_7; \mathbf{Z}/2\mathbf{Z})$.

Proof. In $H_*(\Omega E_7; \mathbf{Z}/2\mathbf{Z})$ y_j*b_i and $\operatorname{Sq}_*^{2^k}b_i$ are determined as follows. See Theorem 5.11 in [6].

b_i	$y_6 * b_i$	$y_{10} * b_i$	$y_{18} * b_i$
b_2	0	0	b_{10}^2
b_4	b_{10}	b_{14}	$b_{22} + b_2 b_{10}^2$
b_8	$b_{14} + b_4 b_{10}$	$b_{18} + b_4 b_{14}$	$b_{26} + b_4 b_{22} + b_2 b_4 b_{10}^2$
b_{10}	0	$ b_{10}^2 $	b_{14}^2
$ b_{14} $	$ b_{10}^2 $	0	b_{16}^2
b_{16}	$b_{22} + b_8 b_{14} + b_4 b_8 b_{10}$	$b_{26} + b_8 b_{18} + b_4 b_8 b_{14}$	$b_{34} + b_8 b_{26} + b_4 b_8 b_{22} + b_2 b_4 b_8 b_{10}^2$
b_{18}	0	$ b_{14}^2 $	b_{18}^2
b_{22}	b_{14}^2	b_{16}^2	b_{10}^4
b_{26}	b_{16}^2	$ b_{18}^2 $	b_{22}^2
b_{34}	b_{10}^4	b_{22}^2	b_{26}^2

b_i	$\operatorname{Sq}_*^2 b_i$	$\operatorname{Sq}_*^4 b_i$	$\operatorname{Sq}_*^8 b_i$	$\mathrm{Sq}^{16}_*b_i$
b_4	b_2	_		
b_8	$b_{2}b_{4}$	b_4		·
b_{10}	b_4^2	0		
b_{14}	0	b_{10}		
b_{16}	$b_{14} + b_2 b_4 b_8$	$b_{4}b_{8}$	b_8	
b_{18}	0	0	b_{10}	·
b_{22}	b_{10}^2	0	b_{14}	
b_{26}	0	b_{22}	b_{18}	
b_{34}	b_{16}^2	0	0	b_{18}

By the naturality of adjoint action, the following diagram commutes.

$$\begin{array}{cccc} H_*(E_7;\mathbf{Z}/2\mathbf{Z}) \otimes H_*(\Omega E_7\;;\mathbf{Z}/2\mathbf{Z}) & \stackrel{\mathrm{ad}_*}{\longrightarrow} & H_*(\Omega E_7\;;\mathbf{Z}/2\mathbf{Z}) \\ \downarrow & & \downarrow & & \downarrow \\ H_*(E_8;\mathbf{Z}/2\mathbf{Z}) \otimes H_*(\Omega E_8\;;\mathbf{Z}/2\mathbf{Z}) & \stackrel{\mathrm{ad}_*}{\longrightarrow} & H_*(\Omega E_8\;;\mathbf{Z}/2\mathbf{Z}) \end{array}$$

Thus we can easily see that above tables remain true also in $H_*(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$ except for $y_j * b_{10}$ and $y_j * b_{18}$ by replacing b_{10}, b_{18} by 0.

Also we can easily see that

$$Sq_*^8Sq_*^4Sq_*^2b_{28} = Sq_*^{14}b_{28} = b_{14} \neq 0.$$

This means $Sq_*^2b_{28} = b_{26}$.

If b_i is primitive, y_j*b_i is primitive. By (viii) of Theorem 3.1, y_j*b_i is primitive for

$$(i,j) \in \left\{ \begin{array}{l} (10,38), (12,38), (12,58), (20,22), (20,34), (20,46), \\ (20,58), (24,26), (24,38), (24,46), (24,58) \end{array} \right\}.$$

Since no primitive elements of these degrees are there in $H_*(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$, these elements are 0.

Next we consider $y_{12} * b_2$. Because $y_{12} * b_2$ is primitive, it is b_{14} or 0. On the other hand, we have

$$\overline{\Delta}_*(y_{12} * b_4) = (y_{12} * b_2) \otimes b_2 + (y_6 * b_2) \otimes (y_6 * b_2) + b_2 \otimes (y_{12} * b_2)$$
$$= \overline{\Delta}_*((y_{12} * b_2)b_2).$$

This means $y_{12} * b_4 = (y_{12} * b_2)b_2$ since there is no primitive element in $H_{16}(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$. Therefore we have

$$\operatorname{Sq}_{*}^{2}(y_{12} * b_{4}) = \operatorname{Sq}_{*}^{2}(y_{12} * b_{2})b_{2} = 0,$$

while

$$\operatorname{Sq}_{*}^{2}(y_{12} * b_{4}) = y_{10} * b_{4} + y_{12} * b_{2} = b_{14} + y_{12} * b_{2}.$$

Hence we obtain

$$y_{12} * b_2 = b_{14},$$

 $y_{12} * b_4 = b_{14}b_2.$

In the same way we can easily show

$$y_{20} * b_2 = b_{22},$$

 $y_{20} * b_4 = b_{22}b_2,$
 $y_{24} * b_2 = b_{26},$
 $y_{24} * b_4 = b_{28} + b_{26}b_2.$

Since

$$\overline{\Delta}_*(y_{12}*b_8) = \Delta_*(y_{12})*\overline{\Delta}_*b_8 = \overline{\Delta}_*(b_{14}b_4b_2)$$

and no primitive element is there in $H_{20}(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$, we have

$$y_{12} * b_8 = b_{14}b_4b_2.$$

In the similar way we can determine

$$y_{12} * b_{28}, y_{20} * b_{28}, y_{12} * b_{16}, y_{20} * b_{8}, y_{20} * b_{16}$$

as in the table of Theorem.

Also as

$$\overline{\Delta}_*(y_{24} * b_8) = \Delta_* y_{24} * \overline{\Delta}_* b_8$$

= $\overline{\Delta}_*(b_{26}b_4b_2 + b_{28}b_4)$

and the only primitive element in $H_{32}(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$ is b_{16}^2 , we can put

(1)
$$y_{24} * b_8 = b_{26}b_4b_2 + b_4b_{28} + \rho b_{16}^2$$

where $\rho \in \mathbf{Z}/2\mathbf{Z}$. Applying Sq_*^4 to each side of (1), we have

$$\operatorname{Sq}_{*}^{4}(y_{24} * b_{8}) = y_{20} * b_{8} + y_{24} * b_{4} = b_{22}b_{4}b_{2} + b_{26}b_{2},$$

while

$$\operatorname{Sq}_{*}^{4}(b_{26}b_{4}b_{2} + b_{28}b_{4} + \rho b_{16}^{2}) = b_{22}b_{4}b_{2} + b_{26}b_{2} + \rho b_{14}^{2}.$$

Thus $\rho = 0$ and $y_{24} * b_8$ is determined. Now we can determine $y_{24} * b_{16}$ modulo primitive elements. Since no primitive elements is there in $H_{40}(\Omega E_8; \mathbf{Z}/2\mathbf{Z})$, we can determine $y_{24} * b_{16}$ as

$$y_{24} * b_{16} = b_{28}b_8b_4 + b_{26}b_8b_4b_2.$$

Since b_{14} is primitive, $y_{20} * b_{14} = b_{34}$ or 0. Also $\operatorname{Sq}_{*}^{2}(y_{20} * b_{14}) = y_{18} * b_{14} = b_{16}^{2}$. This implies

$$y_{20} * b_{14} = b_{34}, \text{ Sq}_*^2 b_{34} = b_{16}^2.$$

In the similar way we apply Sq_*^2 to $y_6 * b_{28}$, Sq_*^2 to $y_{12} * b_{22}$, Sq_*^4 to $y_{12} * b_{26}$ and Sq_*^2 to $y_{20} * b_{26}$ and see that the followings are determined as the statement:

$$y_6 * b_{28}, y_{12} * b_{22}, y_{12} * b_{26}, y_{20} * b_{26}, \operatorname{Sq}_*^4b_{38}, \operatorname{Sq}_*^2b_{46}.$$

From the above result we can deduce that

$$Sq_*^8b_{46} = Sq_*^8(y_{20} * b_{26}) = y_{12} * b_{26} = b_{38}.$$

Also as $\overline{\Delta}_* \operatorname{Sq}_*^4 b_{28} = \operatorname{Sq}_*^4 \overline{\Delta}_* b_{28} = 0$, we have $\operatorname{Sq}_*^4 b_{28} = 0$. In the similar way we have

$$\operatorname{Sq}_{*}^{2^{k}} b_{i} = 0 \text{ for } (k, j) \in \begin{cases} (3, 28), (1, 38), (3, 38), (2, 46), \\ (4, 46), (2, 58), (3, 58), (4, 58) \end{cases}$$

Using the above result we can compute $\operatorname{Sq}_*^4(y_{18} * b_{38})$ as

$$\operatorname{Sq}_{*}^{4}y_{18} * b_{38} = y_{18} * b_{34} = b_{26}^{2},$$

while $y_{18} * b_{38} = b_{28}^2$ or 0. This implies $y_{18} * b_{38} = b_{28}^2$. In the similar manner, applying Sq_*^4 to $y_{10} * b_{28}$, Sq_*^4 to $y_{10} * b_{38}$, Sq_*^8 to $y_6 * b_{46}$, Sq_*^2 to $y_{12} * b_{34}$, Sq_*^4 to $y_{24} * b_{14}$ and Sq_*^2 to $y_{24} * b_{22}$, the followings are determined:

$$y_{10} * b_{28}, y_6 * b_{38}, y_6 * b_{46}, y_{12} * b_{34}, y_{24} * b_{14}, y_{24} * b_{22}$$

as in the table in Theorem.

Moreover by applying Sq_*^4 to $y_{10}*b_{46}$, Sq_*^2 to $y_{12}*b_{46}$ and Sq_*^2 to $y_{20}*b_{38}$ we have that

$$y_{10} * b_{46} = b_{28}^2,$$

 $y_{12} * b_{46} = b_{58},$
 $y_{20} * b_{38} = b_{58}.$

Since $y_{18}^2 * b_{28} = 0$, we can see

$$y_{18} * (y_{18} * b_{28}) = y_{18} * (b_{16}^2 b_{14} + b_{46}) = b_{16}^4 + y_{18} * b_{46} = 0.$$

Therefore $y_{18} * b_{46} = b_{16}^4$. In this way we compute $y_{12}^2 * b_2$, $y_{24}^2 * b_4$ to obtain

$$y_{12} * b_{14} = 0, y_{24} * b_{28} = b_{26}^{2}.$$

Also we can compute $y_{24} * b_{34}$ as

$$y_{24} * b_{34} = y_{24} * (y_{20} * b_{14}) = y_{20} * (y_{24} * b_{14}) = y_{20} * b_{38} = b_{58}.$$

The rest we have to do is to determine $y_6 * b_{58}$, $y_{10} * b_{58}$ and $y_{18} * b_{58}$. By applying Sq_*^2 to $y_{20} * b_{38}$, we have

$$\operatorname{Sq}_{*}^{2}b_{58} = \operatorname{Sq}_{*}^{2}(y_{20} * b_{38}) = y_{18} * b_{38} = b_{28}^{2}.$$

Thus by applying Sq_*^2 to $y_{12} * b_{58}$, it follows that

$$0 = \operatorname{Sq}_{*}^{2}(y_{12} * b_{58}) = y_{10} * b_{58} + y_{12} * b_{28}^{2} = y_{10} * b_{58} + b_{34}^{2}.$$

Therefore $y_{10} * b_{58} = b_{34}^2$. We apply Sq_*^4 to $y_{10} * b_{58}$ and Sq_*^8 to $y_{18} * b_{58}$ to obtain

$$y_6 * b_{58} = b_{16}^4,$$

 $y_{18} * b_{58} = b_{38}^2.$

Now we obtain the all entries of the tables in Theorem 4.1.

Q.E.D.

Hiroaki HAMANAKA

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

References

- [1] S.Araki, Cohomology modulo 2 of the compact exceptional groups, J. Math. Osaka Univ. 12(1961),43-65.
- [2] S.Araki & Y.Shikata, Cohomology mod 2 of the compact exceptional group E_8 , Proc. Japan Acad. 57(1961),619-622.
- [3] A.Kono & K.Kozima, The mod 2 homology of the space of loops on the exceptional Lie groups, Proc. Royal Soc. Edinburgh 112 A(1989),187-202.
- [4] A.Kono & K.Kozima, The adjoint action of Lie group on the space of loops, Journal of the Mathematical Society of Japan 45 No.3 (1993),495-510.
- [5] M.Rothenberg & N.Steenrod, The cohomology of the classifying spaces of H-spaces, Bull. Amer. Math. Soc. (N.S.) **71**(1961),872-875.
- [6] H. Hamanaka, Homology ring mod 2 of free loop groups of exceptional Lie groups, To appear in J. Math. Kyoto Univ.
- [7] H. Hamanaka, S. Hara and A. Kono, Adjoint action on the modulo 5 homology groups of E_8 and ΩE_8 , Preprint.
- [8] S.Hara & H.Hamanaka, The homology mod 3 of the space of loops on the exceptional Lie groups, Unpublished.