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1. Introduction

Assume G is a compact, connected, simply connected Lie group. The
space of free loops on G is called LG (G) the free loop group of G,
whose multiplication is defined as

ϕ · ψ(t) = ϕ(t) · ψ(t).

Let ΩG be the space of based loops on G, whose base point is the unit
e. Then LG (G) has ΩG as its normal subgroup and

LG (G) /ΩG ∼= G.

Identifying elements of G with constant maps from S1 to G, LG (G) is
equal to the semidirect product of G and ΩG . Thus the mod p homol-
ogy of LG (G) is determined by the mod p homology of G and ΩG and
the algebra structure of H∗(LG (G) ;Z/pZ) depends on H∗(ad;Z/pZ)
where

ad : G× ΩG → ΩG

is the adjoint map.
In [4] some properties of ad∗ are studied and it is showed that

H∗(ad;Z/pZ) is equal to H∗(p2;Z/pZ) where p2 is the second projec-
tion if and only if H∗(G;Z) is p-torsin free. For an exceptional Lie
group G, H∗(G;Z) has p-torsion when

G = G2, F4, E6, E7, E8 for p = 2,
G = F4, E6, E7, E8 for p = 3,
G = E8 for p = 5.

The case where p = 2 and G 6= E8 is discussed in [6] and the case
of p = 3, 5 is studied in [8, 7] respectively. In this paper we offer the
result of the remained case, (G, p) = (E8, 2). The result is showed in
Theorem 4.1.
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This paper is organized as follows. In §2 we refer to the result of the
algebra structure of H∗(G;Z/2Z) and H∗(ΩG ;Z/2Z) and the Hopf
algebra structure and cohomology operations of them . And in §3 we
introduce the adjoint action and observe its property. Finally in §4 the
induced homomorphism from the adjoint action of E8 is determined by
using the result of E7 and cohomology operations.

The author is the most grateful to Professor Akira Kono for his
advices and encouragements.

2. H∗(G;Z/2Z) and H∗(ΩG ;Z/2Z)

We refer to the result of [1] and [2] about H∗(G;Z/2Z) for G = E7

and E8.

Theorem 2.1.

H∗(E7;Z/2Z) = Z/2Z[x3, x5, x9]/(x
4
3, x

4
5, x

4
9)⊗

∧
(x15, x17, x23, x27)

H∗(E8;Z/2Z) = Z/2Z[x3, x5, x9, x15]/(x3
16, x5

8, x9
4, x15

4)⊗
∧

(x17, x23, x27, x29)

where xi is a generator of degree i. Moreover there is a homomorphism

E7 → E8

whose induced homomorphism maps xi in H∗(E8;Z/2Z) into xi in
H∗(E7;Z/2Z).

Theorem 2.2. The xi’s in Theorem 2.1 can be chosen so as to satisfy

x5 = Sq2x3,
x9 = Sq4x5,

ψ(x3) = ψ(x5) = ψ(x9) = 0

and the coproduct of x15 is

ψ(x15) = x3
2 ⊗ x9 + x5

2 ⊗ x5 + x3
4 ⊗ x3.

The algebra structure of H∗(ΩG ;Z/2Z) can be determined as an
application of the Eilenberg-Moore spectral sequence. And the Hopf
algebra structures and the action of cohomology operations which acts
on homology dually was determined by A.Kono and K.Kozima. See
[5, 3] for detail.

Theorem 2.3.

H∗(ΩE7 ;Z/2Z) =
∧

(b2, b4, b8)⊗ Z/2Z[b10, b14, b16, b18, b22, b26, b34]

H∗(ΩE8 ;Z/2Z) =
∧

(b2, b4, b8, b14)⊗ Z/2Z[b16, b22, b26, b28, b34, b38, b46, b58]

where bi is a generator of degree i.
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Theorem 2.4. The coproduct of H∗(ΩE8 ;Z/2Z) is given as

φ(bi) = 0 for i = 2, 14, 22, 26, 34, 38, 46, 58,

φ(b4) = b2 ⊗ b2,

φ(b8) = b2 ⊗ b2b4 + b4 ⊗ b4 + b2b4 ⊗ b2,

φ(b16) = b2 ⊗ b2b4b8 + b4 ⊗ b4b8 + b2b4 ⊗ b2b8 + b8 ⊗ b8

+b2b8 ⊗ b2b4 + b4b8 ⊗ b4 + b2b4b8 ⊗ b2,

φ(b28) = b14 ⊗ b14.

3. Adjoint action

Let Ad : G × G → G and ad : G × ΩG → ΩG be the adjoint
action of a Lie group G defined by Ad(g, h) = ghg−1 and ad(g, l)(t) =
gl(t)g−1 where g, h ∈ G, l ∈ ΩG and t ∈ [0, 1]. These induce the
homomorphisms

Ad∗ : H∗(G;Z/2Z)⊗ H∗(G;Z/2Z) → H∗(G;Z/2Z)

and

ad∗ : H∗(G;Z/2Z)⊗ H∗(ΩG ;Z/2Z) → H∗(ΩG ;Z/2Z).

Put y∗y′ = Ad∗(y⊗y′) and y∗b = ad∗(y⊗b) where y, y′ ∈ H∗(G;Z/2Z)
and b ∈ H∗(ΩG ;Z/2Z). Following are the dual statement of the result
in [4].

Theorem 3.1. For y, y′, y′′ ∈ H∗(G;Z/2Z) and b, b′ ∈ H∗(ΩG ;Z/2Z)

(i) 1 ∗ y = y, 1 ∗ b = b.
(ii) y∗1 = 0, if |y| > 0, whether 1 ∈ H∗(G;Z/2Z) or 1 ∈ H∗(ΩG ;Z/2Z).
(iii) (yy′) ∗ b = y ∗ (y′ ∗ b).
(iv) y ∗ (bb′) =

∑
(y′ ∗ b)(y′′ ∗ b′) where ∆∗y =

∑
y′ ⊗ y′′.

(v) σ(y ∗ b) = y ∗ σ(b) where σ is the homology suspension.
(vi) Sqn

∗ (y ∗ b) =
∑

i(Sqi
∗y) ∗ (Sqn−i

∗ b).
Sqn

∗ (y ∗ y′) =
∑

i(Sqi
∗y) ∗ (Sqn−i

∗ y′).
(vii)

∆∗(y ∗ b) = (∆∗y) ∗ (∆∗b)

=
∑

(y′ ∗ b′)⊗ (y′′ ∗ b′′)

where ∆∗y =
∑

y′ ⊗ y′′ and ∆∗b =
∑

b′ ⊗ b′′. Also

∆∗(y ∗ b) = (∆∗y) ∗ (∆∗b).

(viii) If b is primitive then y ∗ b is primitive.
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Let y2i ∈ H∗(G;Z/2Z) be the dual of xi
2 for i = 3, 5, 9, 15 and

y12, y24, y20 be the dual of x3
4, x3

8, x5
4 respectively with respect to the

monomial basis. Also in H∗(E8;Z/2Z) we put as

ym = y6
m1y12

m2y24
m3y10

m4y20
m5y18

m6y30
m7

for m = (m1, m2, · · · , m7) ∈ Z/2Z7. Then the result of [4] implies the
next theorem. See [6].

Theorem 3.2. We define a submodule A of H∗(G;Z/2Z) as

A =
∧

(y6, y10, y18) for G = E7

A = 〈ym for all m ∈ Z/2Z7〉 for G = E8.

Then there exist a retraction p : H∗(G;Z/2Z) → A and the following
diagram commutes.

H∗(G;Z/2Z)⊗ H∗(ΩG ;Z/2Z)

A⊗ H∗(ΩG ;Z/2Z)

H∗(ΩG ;Z/2Z)-

?
¡

¡
¡

¡¡µ

ad∗

ad∗
p⊗ 1

Remark

1. The submodule A has an algebra structure induced from that of
H∗(G;Z/2Z). When G = E7, A is a commutative exterior algebra
over Z/2Z. But when G = E8, A is a non-commutative algebra
over Z/2Z. In fact A is the dual of

∧
(x3

2, x5
2, x9

2) for G = E7 and
is the dual of Z/2Z[x3

2, x5
2, x9

2, x2
15]/(x3

16, x5
8, x9

4, x15
4) for G =

E8. Thus we can easily see that, for G = E8, A is generated by
{y6, y12, y24, y10, y20, y18} as algebra and the fundamental relations
are

y2
2i = 0 for i = 3, 6, 12, 5, 10, 9,

[y2i, y2j] = 0 for (i, j) 6= (6, 9), (9, 6), (5, 10), (10, 5), (3, 18), (18, 3)

and

[y6, y24] = [y10, y20] = [y12, y18](= y30).

2. By Theorem 3.1 (iv) and Theorem 3.2 we see that for b ∈ H∗(ΩG ;Z/2Z)
and i = 3, 5, 9

y2i ∗ b2 = (y2i ∗ b)b + (yi ∗ b)2 + b(y2i ∗ b)

= 0

where yi is the dual of xi for i = 3, 5, 9 with respect to the mono-
mial basis.
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3. By theorem 3.1 and 3.2, when G = E8, if yi ∗ bj is determined
for i = 6, 12, 24, 10, 20, 18 and bj ∈ H∗(G;Z/2Z), then the map
H∗(ad;Z/2Z) is determined completely.

4. Adjoint action on ΩE8

The next theorem is the main result of this paper.

Theorem 4.1. For j ∈ {6, 12, 24, 10, 20, 18} and bi ∈ H∗(ΩE8 ;Z/2Z),
yj ∗ bi is given by the following tables.

bj y6 ∗ bj y10 ∗ bj y18 ∗ bj

b2 0 0 0
b4 0 b14 b22

b8 b14 b4b14 b26 + b4b22

b14 0 0 b2
16

b16 b22 + b8b14 b26 + b4b8b14 b34 + b8b26 + b4b8b22

b22 b2
14 b2

16 0
b26 b2

16 0 b2
22

b28 b34 b38 b2
16b14 + b46

b34 0 b2
22 b2

26

b38 b2
22 0 b2

28

b46 b2
26 b2

28 b4
16

b58 b4
16 b2

34 b2
38

bj y12 ∗ bj y20 ∗ bj y24 ∗ bj

b2 b14 b22 b26

b4 b2b14 b2b22 b28 + b2b26

b8 b2b4b14 b28 + b2b4b22 b4b28 + b2b4b26

b14 0 b34 b38

b16 b28 + b2b4b8b14 b8b28 + b2b4b8b22 b4b8b28 + b2b4b8b26

b22 b34 0 b46

b26 b38 b46 0
b28 0 0 b2

26

b34 0 0 b58

b38 0 b58 0
b46 b58 0 0
b58 0 0 0

Remark The action of cohomology operations on H∗(ΩE8 ;Z/2Z)
is determined by A.Kono and K.Kozima in [3]. But we do not use
them. We use the Hopf algebra structure of H∗(ΩE8 ;Z/2Z) and the
result in H∗(ΩE7 ;Z/2Z).
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Proof. In H∗(ΩE7 ;Z/2Z) yj∗bi and Sq2k

∗ bi are determined as follows.
See Theorem 5.11 in [6].

bi y6 ∗ bi y10 ∗ bi y18 ∗ bi

b2 0 0 b2
10

b4 b10 b14 b22 + b2b
2
10

b8 b14 + b4b10 b18 + b4b14 b26 + b4b22 + b2b4b
2
10

b10 0 b2
10 b2

14

b14 b2
10 0 b2

16

b16 b22 + b8b14 + b4b8b10 b26 + b8b18 + b4b8b14 b34 + b8b26 + b4b8b22 + b2b4b8b
2
10

b18 0 b2
14 b2

18

b22 b2
14 b2

16 b4
10

b26 b2
16 b2

18 b2
22

b34 b4
10 b2

22 b2
26

bi Sq2
∗bi Sq4

∗bi Sq8
∗bi Sq16

∗ bi

b4 b2

b8 b2b4 b4

b10 b2
4 0

b14 0 b10

b16 b14 + b2b4b8 b4b8 b8

b18 0 0 b10

b22 b2
10 0 b14

b26 0 b22 b18

b34 b2
16 0 0 b18

By the naturality of adjoint action, the following diagram commutes.

H∗(E7;Z/2Z)⊗ H∗(ΩE7 ;Z/2Z)
ad∗−→ H∗(ΩE7 ;Z/2Z)

↓ ↓
H∗(E8;Z/2Z)⊗ H∗(ΩE8 ;Z/2Z)

ad∗−→ H∗(ΩE8 ;Z/2Z)

Thus we can easily see that above tables remain true also in H∗(ΩE8 ;Z/2Z)
except for yj ∗ b10 and yj ∗ b18 by replacing b10, b18 by 0.

Also we can easily see that

Sq8
∗Sq4

∗Sq2
∗b28 = Sq14

∗ b28 = b14 6= 0.

This means Sq2
∗b28 = b26.

If bi is primitive, yj ∗ bi is primitive. By (viii) of Theorem 3.1, yj ∗ bi

is primitive for

(i, j) ∈
{

(10, 38), (12, 38), (12, 58), (20, 22), (20, 34), (20, 46),
(20, 58), (24, 26), (24, 38), (24, 46), (24, 58)

}
.
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Since no primitive elements of these degrees are there in H∗(ΩE8 ;Z/2Z),
these elements are 0.

Next we consider y12 ∗ b2. Because y12 ∗ b2 is primitive, it is b14 or 0.
On the other hand, we have

∆∗(y12 ∗ b4) = (y12 ∗ b2)⊗ b2 + (y6 ∗ b2)⊗ (y6 ∗ b2) + b2 ⊗ (y12 ∗ b2)

= ∆∗((y12 ∗ b2)b2).

This means y12 ∗ b4 = (y12 ∗ b2)b2 since there is no primitive element in
H16(ΩE8 ;Z/2Z). Therefore we have

Sq2
∗(y12 ∗ b4) = Sq2

∗(y12 ∗ b2)b2 = 0,

while

Sq2
∗(y12 ∗ b4) = y10 ∗ b4 + y12 ∗ b2 = b14 + y12 ∗ b2.

Hence we obtain

y12 ∗ b2 = b14,

y12 ∗ b4 = b14b2.

In the same way we can easily show

y20 ∗ b2 = b22,

y20 ∗ b4 = b22b2,

y24 ∗ b2 = b26,

y24 ∗ b4 = b28 + b26b2.

Since

∆∗(y12 ∗ b8) = ∆∗(y12) ∗∆∗b8 = ∆∗(b14b4b2)

and no primitive element is there in H20(ΩE8 ;Z/2Z), we have

y12 ∗ b8 = b14b4b2.

In the similar way we can determine

y12 ∗ b28, y20 ∗ b28, y12 ∗ b16, y20 ∗ b8, y20 ∗ b16

as in the table of Theorem.
Also as

∆∗(y24 ∗ b8) = ∆∗y24 ∗∆∗b8

= ∆∗(b26b4b2 + b28b4)

and the only primitive element in H32(ΩE8 ;Z/2Z) is b16
2, we can put

y24 ∗ b8 = b26b4b2 + b4b28 + ρb16
2(1)

where ρ ∈ Z/2Z. Applying Sq4
∗ to each side of (1), we have

Sq4
∗(y24 ∗ b8) = y20 ∗ b8 + y24 ∗ b4 = b22b4b2 + b26b2,
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while

Sq4
∗(b26b4b2 + b28b4 + ρb16

2) = b22b4b2 + b26b2 + ρb14
2.

Thus ρ = 0 and y24 ∗ b8 is determined. Now we can determine y24 ∗ b16

modulo primitive elements. Since no primitive elements is there in
H40(ΩE8 ;Z/2Z), we can determine y24 ∗ b16 as

y24 ∗ b16 = b28b8b4 + b26b8b4b2.

Since b14 is primitive, y20 ∗ b14 = b34 or 0. Also Sq2
∗(y20 ∗ b14) =

y18 ∗ b14 = b16
2. This implies

y20 ∗ b14 = b34, Sq2
∗b34 = b16

2.

In the similar way we apply Sq2
∗ to y6 ∗ b28, Sq2

∗ to y12 ∗ b22, Sq4
∗ to

y12 ∗ b26 and Sq2
∗ to y20 ∗ b26 and see that the followings are determined

as the statement:

y6 ∗ b28, y12 ∗ b22, y12 ∗ b26, y20 ∗ b26, Sq4
∗b38, Sq2

∗b46.

From the above result we can deduce that

Sq8
∗b46 = Sq8

∗(y20 ∗ b26) = y12 ∗ b26 = b38.

Also as ∆∗Sq4
∗b28 = Sq4

∗∆∗b28 = 0, we have Sq4
∗b28 = 0. In the similar

way we have

Sq2k

∗ bi = 0 for (k, j) ∈
{

(3, 28), (1, 38), (3, 38), (2, 46),
(4, 46), (2, 58), (3, 58), (4, 58)

Using the above result we can compute Sq4
∗(y18 ∗ b38) as

Sq4
∗y18 ∗ b38 = y18 ∗ b34 = b26

2,

while y18 ∗ b38 = b28
2 or 0. This implies y18 ∗ b38 = b28

2. In the simi-
lar manner, applying Sq4

∗ to y10 ∗ b28, Sq4
∗ to y10 ∗ b38, Sq8

∗ to y6 ∗ b46,
Sq2

∗ to y12 ∗ b34, Sq4
∗ to y24 ∗ b14 and Sq2

∗ to y24 ∗ b22, the followings are
determined:

y10 ∗ b28, y6 ∗ b38, y6 ∗ b46, y12 ∗ b34, y24 ∗ b14, y24 ∗ b22

as in the table in Theorem.
Moreover by applying Sq4

∗ to y10 ∗ b46, Sq2
∗ to y12 ∗ b46 and Sq2

∗ to
y20 ∗ b38 we have that

y10 ∗ b46 = b28
2,

y12 ∗ b46 = b58,

y20 ∗ b38 = b58.

Since y18
2 ∗ b28 = 0, we can see

y18 ∗ (y18 ∗ b28) = y18 ∗ (b16
2b14 + b46) = b16

4 + y18 ∗ b46 = 0.
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Therefore y18 ∗ b46 = b16
4. In this way we compute y12

2 ∗ b2, y24
2 ∗ b4 to

obtain

y12 ∗ b14 = 0,

y24 ∗ b28 = b26
2.

Also we can compute y24 ∗ b34 as

y24 ∗ b34 = y24 ∗ (y20 ∗ b14) = y20 ∗ (y24 ∗ b14) = y20 ∗ b38 = b58.

The rest we have to do is to determine y6 ∗ b58, y10 ∗ b58 and y18 ∗ b58.
By applying Sq2

∗ to y20 ∗ b38, we have

Sq2
∗b58 = Sq2

∗(y20 ∗ b38) = y18 ∗ b38 = b28
2.

Thus by applying Sq2
∗ to y12 ∗ b58, it follows that

0 = Sq2
∗(y12 ∗ b58) = y10 ∗ b58 + y12 ∗ b28

2 = y10 ∗ b58 + b34
2.

Therefore y10 ∗ b58 = b34
2. We apply Sq4

∗ to y10 ∗ b58 and Sq8
∗ to y18 ∗ b58

to obtain

y6 ∗ b58 = b16
4,

y18 ∗ b58 = b38
2.

Now we obtain the all entries of the tables in Theorem 4.1.

Q.E.D.

Hiroaki HAMANAKA
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