Adjoint actions on the modulo 5 homology
groups of Fg and ()Fg

Hiroaki HAMANAKA*
Department of Mathematics, Kyoto University,
Shin-ichiro HARA
Nagaoka University of Technology,
Akira KONO
Department of Mathematics, Kyoto University

July 10, 1997

1 Introduction

Borel proved in [2] that the integral homology group of the exceptional Lie
group FEyg is not 5-torsion free and

H*(Eg;7./5) & A(x3, 11, T15, T23, Tay, T35, T3, Ta7)RZ/5[112] /(212°), With |z;]

as algebra.

Araki showed the non-commutativity of the Pontrjagin ring H,(Fg;Z/5)
in [1]. The whole Hopf algebra structure and the cohomology operations
were determined by Kono in [6]. But it was due to the partial computation
of Cotor™"(Fs2/5)(7,/5 7,/5), which was rather complicated. In [5], using
secondary cohomology operations, Kane gave a general theorem to determine
the Pontrjagin ring which is non-commutative and determined H,(Es;Z/5)
as a Hopf algebra over As.
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Also, for a compact, connected Lie group G, the free loop group of G
denoted by LG(G) is the space of free loops on G equiped with multiplication
as

¢ (t) = o(t) - ¥(t),
and has ()G as its normal subgroup. Thus

LG(G)/QG = G,

and identifying elements of G with constant maps from S! to G, LG(G) is
equal to the semi-direct product of G and (2G. This means that the homology
of LG(G) is determined by the homology of G and QG as module and the
algebra structure of H,(LG(G); Z/p) depends on H,(Ad; Z/p) where

Ad: G x QG — QG

is the adjoint map. Since the next diagram commutes where A\ and p
are the multiplication maps of QG, LG(G) and G respectively and w is the
composition

(1QG x T x 1g) o) (1QGXG x Ad x 1g) o) (1QG X AG X ]_QGXG),

WG xGXxVGxG —Y~ QG xQGx G xG 22X 06 x G

~ ~ ~
= X = =

LG(G) % LG(G) X -LG(G)

we can determine directly the algebra structure of H,.(LG(G); Z/p) by the
knowledge of the Hopf algebra structure of H,(G; Z/p), H.(QG; Z/p) and in-
duced homology map H.(Ad; Z/p). See Theorem 6.12 of [4] for detail. More-
over, in [8], it is showed that provided G is simply connected, H*(Ad; Z/p)
is equal to the induced homology map of second projection if and only if
H.(G; Z) is p-torsion free. Thus the case of (G,p) = (Es,5) is non-trivial.

In this paper we determine H,(Ad; Z/5) for G = Eg and at the same
time, we offer a more simple method for the determination of the coproduct
and the cohomology operations on H*(FEs;Z/5) using the adjoint actions of
Es on QEg. We also determine H,(Q2FEs;Z/5) as a Hopf algebra over As;.

This paper is organized as follows. In the next section we breifly see the al-
gebra structures of H*(Eg;Z/5) and H,(£2Es; Z/5) using the Serre spectral se-
quences. In the third section we determine the adjoint action of H,(Es;Z/5)
on H,.(QFEs;7/5) which was introduced in [8]. It gives a easy computation of
the Hopf algebra structures and the cohomology operations on them.
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2  Algebra structures
Let n(j), (1 < j < 8), be the exponent of Eg, i.e.
{(n(j) h<jes = {1,7,11,13,17,19, 23, 29}.

First we see H*(2Es;Z/5) for low dimensions. Let R be the algebra
Z/5[am|l < j < 8] with |a;|] = 4. By Bott ([3]), the Hopf algebra
H*(QEs;7/5) is isomorphic to R as a vector space. There is a map ¢ :
SU(9) — FEg which induces an isomorphism of 73. Then, Qq : QSU(9) —
Q) Fg induces an isomorhpism of 7 and, as showed in [7], (2q)*ay € H*(QSU(9);Z/5)
is nontrivial and ((Qq)*az)® # 0 for the generator ay € H*(QEg;Z/5). Thus
we have ap” # 0. Tt follows that H*(2Fg;Z/5) is isomorphic to R for x < 50
as algebra. Next there is two possibilities (I) : a3* # 0 and (II) : ap®® = 0.
That is, we can assume it is isomorphic to (I) : R or (I) : R/(as*)®7Z/5[as0],
for x < 10 - n(2) = 70, where |aso| = 50.

Consider the following Serre fibre sequences :

Es - By - K(Z,3), (1)
K(Z,1) — QFs 2% QF;, (2)
QES — %k —> Eg, (3)

where ¢ induces an isomorphism of 3.

Let R = Z/5a2n ;|2 < 1 < 8] with |a;| = 7. Computing the Serre spectral
sequence associated to (2), we can see that, for x < 70, H*(QFs;Z/5) is
isomorphic to (I) : R or (II) : R ® A(as) ® Z/5]as] according to the case :
as? # 0 or ay® = 0. Let S = A(@on(y1]2 < j < 8) with || = i. Again
computing the spectral sequence associated to (3), we have, for x < 71,
H*(Eg;7/5) is isomorphic to (I) : S or (II) : S ® Z/5[#50] ® A(Z5,) where
|Es0| = 50, 51| = 51.

Recall the fact :

H*(K(Za 3)7 2/5) = A(u37u117u517 te ) ® Z/5[u12,U52, o ’]7 ‘U’Z| = 7;7 (4>
where uyy = Plug, u1g = fuir, us1 = PPuyy and uzy = Sus;.

Let z; = (*(u;), for i = 11,12,51 and 52, in H*(FEs;Z/5). By the
spectral sequence associated to (1), we obtain, for * < 58, H*(FEg;Z/5) =
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(I) : S ® A(x11,251) ® Z/5[x12, 52] or (II) : S @ A(x11) @ Z/5[x12], where
S = Axon)11]1 < 7 < 7) with |z;] =i

As dim Eg = 248, we can conclude that the possible case is (II) and
z12° = 0. Moreover, the generators {x;} are enough to generate H*(Es;Z/5).
We have determined the algebra structure.

Therorem 1 There is an algebra isomorphism :
H*<E8, Z/5) = A(xQn(j)qu‘l S ] S 7) ® A(l’ll) ® Z/5[x12]/(x125).

In H*(Eg;7Z/5), we can chose Ty and Z5 such that 775 = wus and
7'T51 = Usy, where 7' is the transgression. Then 7/Plis; = Plusy = PP U =
PSBuy = POury = uie®. So we can chose T59 as P'Zs;. Thus we have

Proposition 2 There is an isomorphism for « < 71 :
H*(Es;7/5) = AM(Fan(jy11]2 < J < 8) @ Z/5[F50) @ A(ds1),
and
Pl(.i'g)l) - Ii59.
Because that a; is transgressed to #;; and (Qk)*a; = a; for ¢ = 50, 58,
the next proposition is obtained.
Proposition 3 There are isomorphisms for x < 70 :
H*(QEg;7/5) 2 7./5[on;)|2 < j < 8] @ A(dag) ® Z/5[as0),
H*(QEg; Z/5) 2 Z/5[asu;|2 < 7 < 8]/(a2*®) ® Z/5[aso,
with Pl(asg) = ass and P'(as0) = ass (modulo decomposable).
By the use of a Rothenberg-Steenrod spectral sequence ([10]) :
it is easily seen that
Therorem 4 There is an algebra isomorphism :
H.(QEs; Z/5) = Z/5tan(y|L < j < 8]/(t2") ® Z/5[t1o].
(Remark) The algebra was determined first in [9].
Let o denote the homology suspension. Examining the spectaral se-
quence, we have the following proposition.

Proposition 5 o(ty,j)), (1 < j < 7), and o(ti) are nontirivial primitive
elements in H.(Es;Z/5).



3 Coproducts, cohomology operations and ad-
joint actions

Let ()* denote the dual as to the monomial basis of {z;} and put y; = (x;)*.
We recall the adjoint action which was mentioned in [8]. Let ad : GXG —

G and Ad : G x QG — QG be the adjoint actions for the Lie group G.
Consider the induced maps of homlogy groups :

ad, : H.(G)® H.(G) — H,(G),
Ad, : H.(G)® H.(QG) — H.(QG).

Put yxy = adi(y®y') and y -t = yt = Adu(y @ t).
Our result is the following.

Therorem 6 In H,(Eg;Z/5), there are Yon)+1,(1 < 7 < 7), y11 and yiz
satisfying that

Yi ‘ Ys Yu Y2 Yis Y23 Y21 Yss Y39 Yar
Yo *xYi | Y15 Y23 0 yor yss yse wyar 0O
Ply; 0O w3 0 0 wyis 0 yor 0 3
By 0O 0 yp O O O O O

All y; are primitive and y12 * y; = Y12, ¥i| = Y12¥i — Yilr2-

(Remark) This result coincides with that of §46 - 2 of [5].

From now on, we prove this theorem combining the adjoint actions on
H*(Es; Z/5) and H*(QEs; Z/5).

Dualizing the properties of ad* and Ad* stated in [8], we have

Proposition 7 Fory,y',y" € H.(G) and t, V', t" € H,(QQG)
(1) 1xy=y, 1-t=1.
(2) yx1=0andy-1=0, if |y| > 0.

(3) (yy')t = y(y't).
(4) y(tt) = (=)W () (y"t"), where Ay = Sy’ @ y" is the coproduct.



(5) o(y-t) = Au(y) - o(t), where ¢ is the coproduct and
(y/ ® y//) . (t/ ® t/) — (_1)|y”||t’\(y/t/ ® y”t”).

(6) o(y-1)

(7) If y is primitive then y =y’ = [y,y/], where [y,y'] = yy' — (=1 lyy.

y x o(t), where o is the homology suspension.

(8) If t is primitive then y - t is also primitive.
(9) Py *y') = NPl 'y = Piy' and Pl(y-t) = L/P 'y - Pit.

(Remark) In our case, |t| and |t'| are always even. So y(tt') = X(y't)(y"t")
and (y/ ® y//) . (t/ ® t//) — <y/t/ ® y//t//)‘

To state the non-commutativity of H.(Es;Z/5), we need only the fact :
Lemma 8 [y, 5] # 0.

[Proof] Suppose that [y12,y3] = 0. Then H.(Es;Z/5) = A(ys, y11,%15) @
Z/5]y12] for x < 23. Let {E/} be the Rothenberg-Steenrod spectral sequece
coversing to H*(BEs;Z/5). Then we have

E; = 7/5[5(y3), s(y11), s(y15)] © A(s(y12))

for total degree < 24. Since E)} = E!_ in these degrees, there are inde-
composable elements zy, 212, 216 and 213 in H*(BFEg;Z/5) corresponding to

s(y3), s(y11), s(y15) and s(y12), respectively. Especially,zyz13 # 0. It is a
contradiction. (For detail, see Lemma 5.3 and 5.4 of [6].) 1

Therefore [y12, y3] is the nontrivial primitive element. So we may define
Y15 by that.

PI'OpOSitiOH 9 [y127y3] = Y15

Since o (yiata) = Y12 * 0(te) = Y12 * Y3 = [y12, y3] = Y15, Yiat2 is the indecom-
posable element. Thus we may assume that

t14 = y12t2. (5>

Then ¢4 is primitive and o(t14) = y15.



Let ¢ be the coproduct of H,(QFg;Z/5) and ¢(t) = ¢(t) —t @1 -1t
()* denotes the dual as to the monomial basis of {t5;}. Multiplying a; and
by nonzero scalars or moving them modulo decomposable if we need, we may
assume that as,(j) = (tan())*, (1 < j < 8), as® = (t1o)* and a5y = (t10°)*. As
tio is dual to as®, it is easily verified that

O(thy) = 4ty" @ty + 3t2° @ to? + 3ty? @ 1y 4 4ty @ty (6)

Play = ay® implies Pltig = ty. Define thy by yiatig — to?t14. Then by (6)
and Proposition 7, ¢(thy) = A*(y12)P(t10) — d(ta) d(t1a) = thy @ 1 4+ 1 ® th,.
On the other hand, since Ply;s and Pltyy are trivial, Plth, = y19Plt1y =
Y1ate = t14. So th, is nontrivial and primitive. Put ¢t = t},. Now we obtain
the following equations.

Yiatio = too — to ty, (7)

Pltgs = tiy. (8)

Using Proposition 7 and ;5° = 0, we can compute y2*ts, that is,

Yiottss = vyt (yiatio + t2'tia)
= yi2’tio + y124(t24t14)
= y124(t24t14)

Here, since yi2t; (j = 14, 26, 38) is primitive, there exists p; € Z/5 such that
Yi2t; = pjtjti2, where t50 = t10°. Note that yi2(t10°) = 0. Therefore modulo
the ideal (o6, 38, t10°), we have

Yo' (ta'ts) = dyo® (82°114%) = 12912% (t214°) = 24y (tatin?) = —t14°.

But, since y12%t99 is primitive, we obtain y9*tss = —t14°. This means that
Y12'tee, (1 < i < 4), are nontrivial primitive elements. Therefore we can
define the generators so that

taas12i = Yi2'tas, (1 <0 < 3). 9)

Next we will observe y15't14, (1 < i < 3). Since Pltsg is primitive, there
is € € Z/5 such that Pltss = et1p°. On the other hand, from Proposition 3,
Plasy = ass (up to non zero coefficient and modulo decomposable). Dualize
it, then we can see € # 0. Re-define t53 by e ty123t2. We have
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Proposition 10
Y12’ tas = etss, (10)

P:t58 — t105. (11)

From this, y12°tis = y12°Pltos = PlH(y12°tae) = Pl(etss) = et1p®. So we
can fix
tiat12i = y12'ts, (1 <0 <2). (12)

By Pl(yiattar) = 112" Pltor, Pl is determined on all to.
We summarize the results.

Therorem 11 In Therem 4, we can chose the generators satisfying the fol-
lowing table :

loj ‘ to 10 t1g Tog tog t3a 138  lap ts8
Yiota; | tia tog —ta*tia tog tsa s tag  €tio” €lss —€ ‘lig®
Plty; | 0 to 0 tu 0 tog 0 tsg t10°

All tor, (k #5) are primitive and
O(thy) = 4ty @ty + 3t5° @ 9% + 3ty? @ ty° + 4ty @ty

[Proof of Theorem 6] Put yon(jj+1 = 0(tan())(3 < j < 7). Theorem 6 is
an immediate consequence of Theorem 1, Theorem 4 and Proposition 5 with
Proposition 7. 1

Fix the basis of H.(Es;Z/5) :

{H] 1Won()+12 Oy Myfl0 < g < 1, 0 <e < 5}

Let ( )* be the dual with respect to the above basis. We may assume that
Ton()+1 = (Yon()+1)"s (2 < 7 < 7). Let ¢ be the coproduct of H*(Es;Z/5)
and gp( ) = ¢p(z) —2x®1—1®z. Then the following theorem is easily
obtained by dualizing Theorem 6.

Therorem 12 In Theorem 1, we can chose the generators satisfying follow-
ing tables:

Ly ‘ T3  Ti1 Ti2 Ti1s T23 Tar T35 39 Ta7
Pll’i T11 0 0 23 0 I35 0 Tyt 0
Bl’i 0 T12 0 0 I122/2 0 ZL’123/3! 0 ZE124/4!
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Ti | PT;

T15 | T12 ® T3

Tog | T12 & X131

Tor | T12 ® T15 + 1127 /2 @ 23

T35 | T12 @ Tog + T12°/2 @ 1

T3g | T12 ® Toy + 1122 /2 @ T15 + 112 /3! @ 13
Ta7 | T12 @ T35 + T12%/2 ® o3 + 112° /3! @ 11

(Remark) In [6], Zon(jy41, (4 < j < 7), are chosen as our 2xa7, 2735, 3139

and 3lx4; respectively.
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