Adjoint actions on the modulo 5 homology groups of E_8 and ΩE_8

Hiroaki HAMANAKA* Department of Mathematics, Kyoto University, Shin-ichiro HARA Nagaoka University of Technology, Akira KONO Department of Mathematics, Kyoto University

July 10, 1997

1 Introduction

Borel proved in [2] that the integral homology group of the exceptional Lie group E_8 is not 5-torsion free and

 $H^*(E_8; \mathbb{Z}/5) \cong \Lambda(x_3, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47}) \otimes \mathbb{Z}/5[x_{12}]/(x_{12}^5)$, with $|x_i| = i$,

as algebra.

Araki showed the non-commutativity of the Pontrjagin ring $H_*(E_8; \mathbb{Z}/5)$ in [1]. The whole Hopf algebra structure and the cohomology operations were determined by Kono in [6]. But it was due to the partial computation of $\operatorname{Cotor}^{H^*(E_8;\mathbb{Z}/5)}(\mathbb{Z}/5,\mathbb{Z}/5)$, which was rather complicated. In [5], using secondary cohomology operations, Kane gave a general theorem to determine the Pontrjagin ring which is non-commutative and determined $H_*(E_8;\mathbb{Z}/5)$ as a Hopf algebra over \mathcal{A}_5 .

^{*}Partially supported by JSPS Research Fellowships for Young Scientists.

Also, for a compact, connected Lie group G, the free loop group of G denoted by LG(G) is the space of free loops on G equiped with multiplication as

$$\phi \cdot \psi(t) = \phi(t) \cdot \psi(t),$$

and has ΩG as its normal subgroup. Thus

$$LG(G)/\Omega G \cong G,$$

and identifying elements of G with constant maps from S^1 to G, LG(G) is equal to the semi-direct product of G and ΩG . This means that the homology of LG(G) is determined by the homology of G and ΩG as module and the algebra structure of $H_*(LG(G); \mathbb{Z}/p)$ depends on $H_*(Ad; \mathbb{Z}/p)$ where

$$Ad: G \times \Omega G \to \Omega G$$

is the adjoint map. Since the next diagram commutes where λ, λ' and μ are the multiplication maps of ΩG , LG(G) and G respectively and ω is the composition

$$(1_{\Omega G} \times T \times 1_G) \circ (1_{\Omega G \times G} \times Ad \times 1_G) \circ (1_{\Omega G} \times \Delta_G \times 1_{\Omega G \times G}),$$

$$\Omega G \times G \times \Omega G \times G \xrightarrow{\omega} \Omega G \times \Omega G \times G \times G \xrightarrow{\lambda \times \mu} \Omega G \times G$$

$$\downarrow \cong \times \cong$$

$$LG(G) \times LG(G) \xrightarrow{\lambda'} LG(G)$$

we can determine directly the algebra structure of $H_*(LG(G); Z/p)$ by the knowledge of the Hopf algebra structure of $H_*(G; Z/p)$, $H_*(\Omega G; Z/p)$ and induced homology map $H_*(Ad; Z/p)$. See Theorem 6.12 of [4] for detail. Moreover, in [8], it is showed that provided G is simply connected, $H^*(Ad; Z/p)$ is equal to the induced homology map of second projection if and only if $H_*(G; Z)$ is p-torsion free. Thus the case of $(G, p) = (E_8, 5)$ is non-trivial.

In this paper we determine $H_*(Ad; Z/5)$ for $G = E_8$ and at the same time, we offer a more simple method for the determination of the coproduct and the cohomology operations on $H^*(E_8; Z/5)$ using the adjoint actions of E_8 on ΩE_8 . We also determine $H_*(\Omega E_8; Z/5)$ as a Hopf algebra over \mathcal{A}_5 .

This paper is organized as follows. In the next section we breifly see the algebra structures of $H^*(E_8; \mathbb{Z}/5)$ and $H_*(\Omega E_8; \mathbb{Z}/5)$ using the Serre spectral sequences. In the third section we determine the adjoint action of $H_*(E_8; \mathbb{Z}/5)$ on $H_*(\Omega E_8; \mathbb{Z}/5)$ which was introduced in [8]. It gives a easy computation of the Hopf algebra structures and the cohomology operations on them.

2 Algebra structures

Let n(j), $(1 \le j \le 8)$, be the exponent of E_8 , i.e.

$$\{n(j)\}_{1 \le j \le 8} = \{1, 7, 11, 13, 17, 19, 23, 29\}.$$

First we see $H^*(\Omega E_8; \mathbb{Z}/5)$ for low dimensions. Let R be the algebra $\mathbb{Z}/5[a_{2n(j)}|1 \leq j \leq 8]$ with $|a_i| = i$. By Bott ([3]), the Hopf algebra $H^*(\Omega E_8; \mathbb{Z}/5)$ is isomorphic to R as a vector space. There is a map q: $SU(9) \rightarrow E_8$ which induces an isomorphism of π_3 . Then, $\Omega q : \Omega SU(9) \rightarrow \Omega E_8$ induces an isomorphism of π_2 and, as showed in [7], $(\Omega q)^* a_2 \in H^2(\Omega SU(9); \mathbb{Z}/5)$ is nontrivial and $((\Omega q)^* a_2)^5 \neq 0$ for the generator $a_2 \in H^2(\Omega E_8; \mathbb{Z}/5)$. Thus we have $a_2^5 \neq 0$. It follows that $H^*(\Omega E_8; \mathbb{Z}/5)$ is isomorphic to R for * < 50 as algebra. Next there is two possibilities (I) : $a_2^{25} \neq 0$ and (II) : $a_2^{25} = 0$. That is, we can assume it is isomorphic to (I) : R or (II) : $R/(a_2^{25}) \otimes \mathbb{Z}/5[a_{50}]$, for $* < 10 \cdot n(2) = 70$, where $|a_{50}| = 50$.

Consider the following Serre fibre sequences :

$$\tilde{E}_8 \xrightarrow{k} E_8 \xrightarrow{\iota} K(\mathbf{Z}, 3),$$
(1)

$$K(\mathbf{Z}, 1) \longrightarrow \Omega \tilde{E}_8 \xrightarrow{\Omega k} \Omega E_8,$$
 (2)

$$\Omega \tilde{E}_8 \longrightarrow * \longrightarrow \tilde{E}_8, \tag{3}$$

where ι induces an isomorphism of π_3 .

Let $\hat{R} \equiv \mathbb{Z}/5[\tilde{a}_{2n(i)}|2 \leq i \leq 8]$ with $|\tilde{a}_i| = i$. Computing the Serre spectral sequence associated to (2), we can see that, for * < 70, $H^*(\Omega \tilde{E}_8; \mathbb{Z}/5)$ is isomorphic to (I) : \tilde{R} or (II) : $\tilde{R} \otimes \Lambda(\tilde{a}_{49}) \otimes \mathbb{Z}/5[a_{50}]$ according to the case : $a_2^{25} \neq 0$ or $a_2^{25} = 0$. Let $\tilde{S} \equiv \Lambda(\tilde{x}_{2n(j)+1}|2 \leq j \leq 8)$ with $|\tilde{x}_i| = i$. Again computing the spectral sequence associated to (3), we have, for * < 71, $H^*(\tilde{E}_8; \mathbb{Z}/5)$ is isomorphic to (I) : \tilde{S} or (II) : $\tilde{S} \otimes \mathbb{Z}/5[\tilde{x}_{50}] \otimes \Lambda(\tilde{x}_{51})$ where $|\tilde{x}_{50}| = 50, |\tilde{x}_{51}| = 51$.

Recall the fact :

$$H^*(K(\mathbf{Z},3);\mathbf{Z}/5) \cong \Lambda(u_3, u_{11}, u_{51}, \cdots) \otimes \mathbf{Z}/5[u_{12}, u_{52}, \cdots], \ |u_i| = i, \quad (4)$$

where $u_{11} = \mathcal{P}^1 u_3, u_{12} = \beta u_{11}, u_{51} = \mathcal{P}^5 u_{11}$ and $u_{52} = \beta u_{51}$.

Let $x_i = \iota^*(u_i)$, for i = 11, 12, 51 and 52, in $H^*(E_8; \mathbb{Z}/5)$. By the spectral sequence associated to (1), we obtain, for * < 58, $H^*(E_8; \mathbb{Z}/5) \cong$

(I) : $S \otimes \Lambda(x_{11}, x_{51}) \otimes Z/5[x_{12}, x_{52}]$ or (II) : $S \otimes \Lambda(x_{11}) \otimes Z/5[x_{12}]$, where $S \equiv \Lambda(x_{2n(j)+1}|1 \le j \le 7)$ with $|x_i| = i$.

As dim $E_8 = 248$, we can conclude that the possible case is (II) and $x_{12}^5 = 0$. Moreover, the generators $\{x_i\}$ are enough to generate $H^*(E_8; \mathbb{Z}/5)$. We have determined the algebra structure.

Therorem 1 There is an algebra isomorphism :

 $H^*(E_8; \mathbb{Z}/5) \cong \Lambda(x_{2n(j)+1} | 1 \le j \le 7) \otimes \Lambda(x_{11}) \otimes \mathbb{Z}/5[x_{12}]/(x_{12}^5).$

In $H^*(\tilde{E}_8; \mathbb{Z}/5)$, we can chose \tilde{x}_{50} and \tilde{x}_{51} such that $\tau'\tilde{x}_{50} = u_{51}$ and $\tau'\tilde{x}_{51} = u_{52}$, where τ' is the transgression. Then $\tau'\mathcal{P}^1\tilde{x}_{51} = \mathcal{P}^1 u_{52} = \mathcal{P}^1\beta\mathcal{P}^5 u_{11} = \mathcal{P}^6\beta u_{11} = \mathcal{P}^6 u_{12} = u_{12}^5$. So we can chose \tilde{x}_{59} as $\mathcal{P}^1\tilde{x}_{51}$. Thus we have

Proposition 2 There is an isomorphism for * < 71:

$$H^*(E_8; \mathbb{Z}/5) \cong \Lambda(\tilde{x}_{2n(j)+1} | 2 \le j \le 8) \otimes \mathbb{Z}/5[\tilde{x}_{50}] \otimes \Lambda(\tilde{x}_{51}),$$

and

$$\mathcal{P}^1(\tilde{x}_{51}) = \tilde{x}_{59}.$$

Because that \tilde{a}_i is transgressed to \tilde{x}_{i+1} and $(\Omega k)^* a_i = \tilde{a}_i$ for i = 50, 58, the next proposition is obtained.

Proposition 3 There are isomorphisms for * < 70:

$$H^*(\Omega \tilde{E}_8; \mathbb{Z}/5) \cong \mathbb{Z}/5[\tilde{a}_{2n(j)}|2 \le j \le 8] \otimes \Lambda(\tilde{a}_{49}) \otimes \mathbb{Z}/5[\tilde{a}_{50}]$$

$$H^*(\Omega E_8; \mathbb{Z}/5) \cong \mathbb{Z}/5[a_{2n(j)}|2 \le j \le 8]/(a_2^{25}) \otimes \mathbb{Z}/5[a_{50}],$$

with $\mathcal{P}^1(\tilde{a}_{50}) \equiv \tilde{a}_{58}$ and $\mathcal{P}^1(a_{50}) \equiv a_{58}$ (modulo decomposable).

By the use of a Rothenberg-Steenrod spectral sequence ([10]):

 $E_2 \cong H^{**}(H_*(\Omega E_8; \mathbb{Z}/5)) \equiv \operatorname{Ext}_{H_*(\Omega E_8: \mathbb{Z}/5)}(\mathbb{Z}/5, \mathbb{Z}/5) \Rightarrow E_\infty = \mathcal{G}r(H^*(E_8; \mathbb{Z}/5)),$

it is easily seen that

Therorem 4 There is an algebra isomorphism :

$$H_*(\Omega E_8; \mathbb{Z}/5) \cong \mathbb{Z}/5[t_{2n(j)}|1 \le j \le 8]/(t_2^{-5}) \otimes \mathbb{Z}/5[t_{10}].$$

(Remark) The algebra was determined first in [9].

Let σ denote the homology suspension. Examining the spectaral sequence, we have the following proposition.

Proposition 5 $\sigma(t_{2n(j)}), (1 \leq j \leq 7)$, and $\sigma(t_{10})$ are nontrivial primitive elements in $H_*(E_8; \mathbb{Z}/5)$.

3 Coproducts, cohomology operations and adjoint actions

Let ()* denote the dual as to the monomial basis of $\{x_i\}$ and put $y_i = (x_i)^*$.

We recall the adjoint action which was mentioned in [8]. Let $ad : G \times G \rightarrow G$ and $Ad : G \times \Omega G \rightarrow \Omega G$ be the adjoint actions for the Lie group G. Consider the induced maps of homlogy groups :

> $ad_* : H_*(G) \otimes H_*(G) \to H_*(G),$ $Ad_* : H_*(G) \otimes H_*(\Omega G) \to H_*(\Omega G).$

Put $y * y' = ad_*(y \otimes y')$ and $y \cdot t = yt = Ad_*(y \otimes t)$. Our result is the following.

Theorem 6 In $H_*(E_8; \mathbb{Z}/5)$, there are $y_{2n(j)+1}, (1 \le j \le 7)$, y_{11} and y_{12} satisfying that

y_i	y_3	y_{11}	y_{12}	y_{15}	y_{23}	y_{27}	y_{35}	y_{39}	y_{47}
$y_{12} * y_i$	y_{15}	y_{23}	0	y_{27}	y_{35}	y_{39}	y_{47}	0	0
$\mathcal{P}^1_*y_i$	0	y_3	0	0	y_{15}	0	y_{27}	0	y_{39}
$\beta_* y_i$	0	0	y_{11}	0	0	0	0	0	0

All y_i are primitive and $y_{12} * y_i = [y_{12}, y_i] = y_{12}y_i - y_iy_{12}$.

(Remark) This result coincides with that of §46 - 2 of [5].

From now on, we prove this theorem combining the adjoint actions on $H^*(E_8; \mathbb{Z}/5)$ and $H^*(\Omega E_8; \mathbb{Z}/5)$.

Dualizing the properties of ad^* and Ad^* stated in [8], we have

Proposition 7 For $y, y', y'' \in H_*(G)$ and $t, t', t'' \in H_*(\Omega G)$

(1)
$$1 * y = y, 1 \cdot t = t.$$

(2)
$$y * 1 = 0$$
 and $y \cdot 1 = 0$, if $|y| > 0$.

(3) (yy')t = y(y't).

(4) $y(tt') = \Sigma(-1)^{|y''||t|}(y't)(y''t')$, where $\Delta_* y = \Sigma y' \otimes y''$ is the coproduct.

- (5) $\phi(y \cdot t) = \Delta_*(y) \cdot \phi(t)$, where ϕ is the coproduct and $(y' \otimes y'') \cdot (t' \otimes t'') = (-1)^{|y''||t'|} (y't' \otimes y''t'').$
- (6) $\sigma(y \cdot t) = y * \sigma(t)$, where σ is the homology suspension.
- (7) If y is primitive then y * y' = [y, y'], where $[y, y'] = yy' (-1)^{|y||y'|}y'y$.
- (8) If t is primitive then $y \cdot t$ is also primitive.
- (9) $\mathcal{P}^n_*(y*y') = \sum_i \mathcal{P}^{n-i}_* y*\mathcal{P}^i_* y'$ and $\mathcal{P}^n_*(y\cdot t) = \sum_i \mathcal{P}^{n-i}_* y\cdot\mathcal{P}^i_* t.$

(Remark) In our case, |t| and |t'| are always even. So $y(tt') = \Sigma(y't)(y''t')$ and $(y' \otimes y'') \cdot (t' \otimes t'') = (y't' \otimes y''t'')$.

To state the non-commutativity of $H_*(E_8; \mathbb{Z}/5)$, we need only the fact :

Lemma 8 $[y_{12}, y_3] \neq 0.$

[Proof] Suppose that $[y_{12}, y_3] = 0$. Then $H_*(E_8; \mathbb{Z}/5) \cong \Lambda(y_3, y_{11}, y_{15}) \otimes \mathbb{Z}/5[y_{12}]$ for * < 23. Let $\{E'_r\}$ be the Rothenberg-Steenrod spectral sequece coversing to $H^*(BE_8; \mathbb{Z}/5)$. Then we have

$$E_2' \cong \mathbb{Z}/5[s(y_3), s(y_{11}), s(y_{15})] \otimes \Lambda(s(y_{12}))$$

for total degree < 24. Since $E'_2 = E'_{\infty}$ in these degrees, there are indecomposable elements z_4, z_{12}, z_{16} and z_{13} in $H^*(BE_8; \mathbb{Z}/5)$ corresponding to $s(y_3), s(y_{11}), s(y_{15})$ and $s(y_{12})$, respectively. Especially, $z_4z_{13} \neq 0$. It is a contradiction. (For detail, see Lemma 5.3 and 5.4 of [6].)

Therefore $[y_{12}, y_3]$ is the nontrivial primitive element. So we may define y_{15} by that.

Proposition 9 $[y_{12}, y_3] = y_{15}$.

Since $\sigma(y_{12}t_2) = y_{12} * \sigma(t_2) = y_{12} * y_3 = [y_{12}, y_3] = y_{15}, y_{12}t_2$ is the indecomposable element. Thus we may assume that

$$t_{14} = y_{12}t_2. (5)$$

Then t_{14} is primitive and $\sigma(t_{14}) = y_{15}$.

Let ϕ be the coproduct of $H_*(\Omega E_8; \mathbb{Z}/5)$ and $\overline{\phi}(t) = \phi(t) - t \otimes 1 - 1 \otimes t$. ()* denotes the dual as to the monomial basis of $\{t_{2j}\}$. Multiplying a_i and t_i by nonzero scalars or moving them modulo decomposable if we need, we may assume that $a_{2n(j)} = (t_{2n(j)})^*$, $(1 \leq j \leq 8)$, $a_2^5 = (t_{10})^*$ and $a_{50} = (t_{10}^5)^*$. As t_{10} is dual to a_2^5 , it is easily verified that

$$\overline{\phi}(t_{10}) = 4t_2^{\ 4} \otimes t_2 + 3t_2^{\ 3} \otimes t_2^{\ 2} + 3t_2^{\ 2} \otimes t_2^{\ 3} + 4t_2 \otimes t_2^{\ 4}.$$
 (6)

 $\mathcal{P}^{1}a_{2} = a_{2}{}^{5}$ implies $\mathcal{P}_{*}^{1}t_{10} = t_{2}$. Define t'_{22} by $y_{12}t_{10} - t_{2}{}^{4}t_{14}$. Then by (6) and Proposition 7, $\overline{\phi}(t'_{22}) = \Delta^{*}(y_{12})\phi(t_{10}) - \phi(t_{2}){}^{4}\phi(t_{14}) = t'_{22} \otimes 1 + 1 \otimes t'_{22}$. On the other hand, since $\mathcal{P}_{*}^{1}y_{12}$ and $\mathcal{P}_{*}^{1}t_{14}$ are trivial, $\mathcal{P}_{*}^{1}t'_{22} = y_{12}\mathcal{P}_{*}^{1}t_{10} = y_{12}t_{2} = t_{14}$. So t'_{22} is nontrivial and primitive. Put $t_{22} = t'_{22}$. Now we obtain the following equations.

$$y_{12}t_{10} = t_{22} - t_2^{\ 4}t_{14},\tag{7}$$

$$\mathcal{P}^1_* t_{22} = t_{14}. \tag{8}$$

Using Proposition 7 and $y_{12}^5 = 0$, we can compute $y_{12}^4 t_{22}$, that is,

$$y_{12}^{4}t_{22} = y_{12}^{4}(y_{12}t_{10} + t_{2}^{4}t_{14})$$

= $y_{12}^{5}t_{10} + y_{12}^{4}(t_{2}^{4}t_{14})$
= $y_{12}^{4}(t_{2}^{4}t_{14})$

Here, since $y_{12}t_j$ (j = 14, 26, 38) is primitive, there exists $\rho_j \in \mathbb{Z}/5$ such that $y_{12}t_j = \rho_j t_{j+12}$, where $t_{50} = t_{10}^5$. Note that $y_{12}(t_{10}^5) = 0$. Therefore modulo the ideal $(t_{26}, t_{38}, t_{10}^5)$, we have

$$y_{12}{}^{4}(t_{2}{}^{4}t_{14}) \equiv 4y_{12}{}^{3}(t_{2}{}^{3}t_{14}{}^{2}) \equiv 12y_{12}{}^{2}(t_{2}{}^{2}t_{14}{}^{3}) \equiv 24y_{12}(t_{2}t_{14}{}^{4}) \equiv -t_{14}{}^{5}.$$

But, since $y_{12}^{4}t_{22}$ is primitive, we obtain $y_{12}^{4}t_{22} = -t_{14}^{5}$. This means that $y_{12}^{i}t_{22}$, $(1 \leq i \leq 4)$, are nontrivial primitive elements. Therefore we can define the generators so that

$$t_{22+12i} = y_{12}{}^{i} t_{22}, (1 \le i \le 3).$$
(9)

Next we will observe $y_{12}{}^{i}t_{14}$, $(1 \le i \le 3)$. Since $\mathcal{P}_{*}^{1}t_{58}$ is primitive, there is $\epsilon \in \mathbb{Z}/5$ such that $\mathcal{P}_{*}^{1}t_{58} = \epsilon t_{10}{}^{5}$. On the other hand, from Proposition 3, $\mathcal{P}^{1}a_{50} \equiv a_{58}$ (up to non zero coefficient and modulo decomposable). Dualize it, then we can see $\epsilon \ne 0$. Re-define t_{58} by $\epsilon^{-1}y_{12}{}^{3}t_{22}$. We have

Proposition 10

$$y_{12}{}^{3}t_{22} = \epsilon t_{58}, \tag{10}$$

$$\mathcal{P}^1_* t_{58} = t_{10}{}^5. \tag{11}$$

From this, $y_{12}^{3}t_{14} = y_{12}^{3}\mathcal{P}_{*}^{1}t_{22} = \mathcal{P}_{*}^{1}(y_{12}^{3}t_{22}) = \mathcal{P}_{*}^{1}(\epsilon t_{58}) = \epsilon t_{10}^{5}$. So we can fix

$$t_{14+12i} = y_{12}{}^{i} t_{14}, \ (1 \le i \le 2).$$
(12)

By $\mathcal{P}^{1}_{*}(y_{12}{}^{i}t_{2k}) = y_{12}{}^{i}\mathcal{P}^{1}_{*}t_{2k}, \mathcal{P}^{1}_{*}$ is determined on all t_{2k} .

We summarize the results.

Therorem 11 In Therem 4, we can chose the generators satisfying the following table :

t_{2j}	t_2	t_{10}	t_{14}	t_{22}	t_{26}	t_{34}	t_{38}	t_{46}	t_{58}
$y_{12}t_{2j}$	t_{14}	$t_{22} - t_2{}^4 t_{14}$	t_{26}	t_{34}	t_{38}	t_{46}	$\epsilon t_{10}{}^5$	ϵt_{58}	$-\epsilon^{-1}t_{14}{}^5$
$\mathcal{P}^1_*t_{2j}$	0	t_2	0	t_{14}	0	t_{26}	0	t_{38}	$t_{10}{}^5$

All t_{2k} , $(k \neq 5)$ are primitive and

$$\overline{\phi}(t_{10}) = 4t_2{}^4 \otimes t_2 + 3t_2{}^3 \otimes t_2{}^2 + 3t_2{}^2 \otimes t_2{}^3 + 4t_2 \otimes t_2{}^4.$$

[Proof of Theorem 6] Put $y_{2n(j)+1} = \sigma(t_{2n(j)}), (3 \le j \le 7)$. Theorem 6 is an immediate consequence of Theorem 1, Theorem 4 and Proposition 5 with Proposition 7.

Fix the basis of $H_*(E_8; \mathbb{Z}/5)$:

$$\{\Pi_{j=1}^7 y_{2n(j)+1} \epsilon_{2n(j)+1} y_{11} \epsilon_{11} y_{12} e | 0 \le \epsilon_i \le 1, \ 0 \le e < 5\}.$$

Let ()* be the dual with respect to the above basis. We may assume that $x_{2n(j)+1} = (y_{2n(j)+1})^*$, $(2 \le j \le 7)$. Let φ be the coproduct of $H^*(E_8; \mathbb{Z}/5)$ and $\overline{\varphi}(x) = \varphi(x) - x \otimes 1 - 1 \otimes x$. Then the following theorem is easily obtained by dualizing Theorem 6.

Theorem 12 In Theorem 1, we can chose the generators satisfying following tables:

								x_{35}		
1	$\mathcal{D}^1 x_i$	x_{11}	0	0	x_{23}	0	x_{35}	0	x_{47}	0
	βx_i	0	x_{12}	0	0	$x_{12}^2/2$	0	$x_{12}^{3}/3!$	0	$x_{12}^4/4!$

(Remark) In [6], $x_{2n(j)+1}$, $(4 \le j \le 7)$, are chosen as our $2x_{27}$, $2x_{35}$, $3!x_{39}$ and $3!x_{47}$ respectively.

Hiroaki HAMANAKA Department of Mathematics, Kyoto University

References

- S. Araki. On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups. Nagoya Math. J., 17(1960), 225-260.
- [2] A. Borel. Sur l'homologie et la cohomologie des groupes de Lie compacts connexes. Amer. J. Math., 76(1954), 273-342.
- [3] R. Bott. The space of loops on Lie group. Michigan Math. J., 5(1955), 35-61.
- [4] H.Hamanaka. Homology ring mod2 of free loop groups of exceptional Lie groups. J.Math.Kyoto Univ., to appear.
- [5] R.M. Kane. The Homology of Hopf Spaces. North-Holloand Mathematical Library 40(1988)
- [6] A. Kono. Hopf algebra structure of simple Lie groups. Journal of Mathematics of Kyoto University, 17-2(1977),259-298.
- [7] A. Kono. On the cohomology mod 2 of E_8 . Journal of Mathematics of Kyoto University, **24-2**(1984),275-280
- [8] A. Kono and K. Kozima. The adjoint action of Lie group on the space of loops. Journal of The Mathematical Society of Japan, 45 No.3(1993),495-510.

- [9] T. Petrie The weakly complex bordism of Lie groups. Ann. Math., 88(1968), 371-402.
- [10] M. Rothenberg and N. Steenrod. The cohomology of the classifying spaces of H-spaces. Bull. Helv., 45(1961), 211-264.