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1 Introduction

Borel proved in [2] that the integral homology group of the exceptional Lie
group E8 is not 5–torsion free and

H∗(E8; Z/5) ∼= Λ(x3, x11, x15, x23, x27, x35, x39, x47)⊗Z/5[x12]/(x12
5), with |xi| = i,

as algebra.
Araki showed the non-commutativity of the Pontrjagin ring H∗(E8; Z/5)

in [1]. The whole Hopf algebra structure and the cohomology operations
were determined by Kono in [6]. But it was due to the partial computation
of CotorH∗(E8;Z/5)(Z/5, Z/5), which was rather complicated. In [5], using
secondary cohomology operations, Kane gave a general theorem to determine
the Pontrjagin ring which is non-commutative and determined H∗(E8; Z/5)
as a Hopf algebra over A5.
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Also, for a compact, connected Lie group G, the free loop group of G
denoted by LG(G) is the space of free loops on G equiped with multiplication
as

φ · ψ(t) = φ(t) · ψ(t),

and has ΩG as its normal subgroup. Thus

LG(G)/ΩG ∼= G,

and identifying elements of G with constant maps from S1 to G, LG(G) is
equal to the semi-direct product of G and ΩG. This means that the homology
of LG(G) is determined by the homology of G and ΩG as module and the
algebra structure of H∗(LG(G); Z/p) depends on H∗(Ad; Z/p) where

Ad : G× ΩG → ΩG

is the adjoint map. Since the next diagram commutes where λ,λ′ and µ
are the multiplication maps of ΩG, LG(G) and G respectively and ω is the
composition

(1ΩG × T × 1G) ◦ (1ΩG×G × Ad× 1G) ◦ (1ΩG ×∆G × 1ΩG×G),

LG(G)× LG(G)

ΩG×G× ΩG×G ΩG× ΩG×G×G ΩG×G

LG(G)

- -

-
? ?

ω λ× µ

∼= × ∼= ∼=
λ′

we can determine directly the algebra structure of H∗(LG(G); Z/p) by the
knowledge of the Hopf algebra structure of H∗(G; Z/p), H∗(ΩG; Z/p) and in-
duced homology map H∗(Ad; Z/p). See Theorem 6.12 of [4] for detail. More-
over, in [8], it is showed that provided G is simply connected, H∗(Ad; Z/p)
is equal to the induced homology map of second projection if and only if
H∗(G; Z) is p-torsion free. Thus the case of (G, p) = (E8, 5) is non-trivial.

In this paper we determine H∗(Ad; Z/5) for G = E8 and at the same
time, we offer a more simple method for the determination of the coproduct
and the cohomology operations on H∗(E8; Z/5) using the adjoint actions of
E8 on ΩE8. We also determine H∗(ΩE8; Z/5) as a Hopf algebra over A5.

This paper is organized as follows. In the next section we breifly see the al-
gebra structures of H∗(E8; Z/5) and H∗(ΩE8; Z/5) using the Serre spectral se-
quences. In the third section we determine the adjoint action of H∗(E8; Z/5)
on H∗(ΩE8; Z/5) which was introduced in [8]. It gives a easy computation of
the Hopf algebra structures and the cohomology operations on them.
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2 Algebra structures

Let n(j), (1 ≤ j ≤ 8), be the exponent of E8, i.e.

{n(j)}1≤j≤8 = {1, 7, 11, 13, 17, 19, 23, 29}.

First we see H∗(ΩE8; Z/5) for low dimensions. Let R be the algebra
Z/5[a2n(j)|1 ≤ j ≤ 8] with |ai| = i. By Bott ([3]), the Hopf algebra
H∗(ΩE8; Z/5) is isomorphic to R as a vector space. There is a map q :
SU(9) → E8 which induces an isomorphism of π3. Then, Ωq : ΩSU(9) →
ΩE8 induces an isomorhpism of π2 and, as showed in [7], (Ωq)∗a2 ∈ H2(ΩSU(9); Z/5)
is nontrivial and ((Ωq)∗a2)

5 6= 0 for the generator a2 ∈ H2(ΩE8; Z/5). Thus
we have a2

5 6= 0. It follows that H∗(ΩE8; Z/5) is isomorphic to R for ∗ < 50
as algebra. Next there is two possibilities (I) : a2

25 6= 0 and (II) : a2
25 = 0.

That is, we can assume it is isomorphic to (I) : R or (II) : R/(a2
25)⊗Z/5[a50],

for ∗ < 10 · n(2) = 70, where |a50| = 50.
Consider the following Serre fibre sequences :

Ẽ8
k−→ E8

ι−→ K(Z, 3), (1)

K(Z, 1) −→ ΩẼ8
Ωk−→ ΩE8, (2)

ΩẼ8 −→ ∗ −→ Ẽ8, (3)

where ι induces an isomorphism of π3.
Let R̃ ≡ Z/5[ã2n(i)|2 ≤ i ≤ 8] with |ãi| = i. Computing the Serre spectral

sequence associated to (2), we can see that, for ∗ < 70, H∗(ΩẼ8; Z/5) is
isomorphic to (I) : R̃ or (II) : R̃ ⊗ Λ(ã49) ⊗ Z/5[a50] according to the case :
a2

25 6= 0 or a2
25 = 0. Let S̃ ≡ Λ(x̃2n(j)+1|2 ≤ j ≤ 8) with |x̃i| = i. Again

computing the spectral sequence associated to (3), we have, for ∗ < 71,
H∗(Ẽ8; Z/5) is isomorphic to (I) : S̃ or (II) : S̃ ⊗ Z/5[x̃50] ⊗ Λ(x̃51) where
|x̃50| = 50, |x̃51| = 51.

Recall the fact :

H∗(K(Z, 3); Z/5) ∼= Λ(u3, u11, u51, · · ·)⊗ Z/5[u12, u52, · · ·], |ui| = i, (4)

where u11 = P1u3, u12 = βu11, u51 = P5u11 and u52 = βu51.
Let xi = ι∗(ui), for i = 11, 12, 51 and 52, in H∗(E8; Z/5). By the

spectral sequence associated to (1), we obtain, for ∗ < 58, H∗(E8; Z/5) ∼=
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(I) : S ⊗ Λ(x11, x51) ⊗ Z/5[x12, x52] or (II) : S ⊗ Λ(x11) ⊗ Z/5[x12], where
S ≡ Λ(x2n(j)+1|1 ≤ j ≤ 7) with |xi| = i.

As dim E8 = 248, we can conclude that the possible case is (II) and
x12

5 = 0. Moreover, the generators {xi} are enough to generate H∗(E8; Z/5).
We have determined the algebra structure.

Therorem 1 There is an algebra isomorphism :

H∗(E8; Z/5) ∼= Λ(x2n(j)+1|1 ≤ j ≤ 7)⊗ Λ(x11)⊗ Z/5[x12]/(x12
5).

In H∗(Ẽ8; Z/5), we can chose x̃50 and x̃51 such that τ ′x̃50 = u51 and
τ ′x̃51 = u52, where τ ′ is the transgression. Then τ ′P1x̃51 = P1u52 = P1βP5u11 =
P6βu11 = P6u12 = u12

5. So we can chose x̃59 as P1x̃51. Thus we have

Proposition 2 There is an isomorphism for ∗ < 71 :

H∗(Ẽ8; Z/5) ∼= Λ(x̃2n(j)+1|2 ≤ j ≤ 8)⊗ Z/5[x̃50]⊗ Λ(x̃51),

and
P1(x̃51) = x̃59.

Because that ãi is transgressed to x̃i+1 and (Ωk)∗ai = ãi for i = 50, 58,
the next proposition is obtained.

Proposition 3 There are isomorphisms for ∗ < 70 :

H∗(ΩẼ8; Z/5) ∼= Z/5[ã2n(j)|2 ≤ j ≤ 8]⊗ Λ(ã49)⊗ Z/5[ã50],

H∗(ΩE8; Z/5) ∼= Z/5[a2n(j)|2 ≤ j ≤ 8]/(a2
25)⊗ Z/5[a50],

with P1(ã50) ≡ ã58 and P1(a50) ≡ a58 (modulo decomposable).

By the use of a Rothenberg-Steenrod spectral sequence ([10]) :

E2
∼= H∗∗(H∗(ΩE8; Z/5)) ≡ ExtH∗(ΩE8:Z/5)(Z/5, Z/5) ⇒ E∞ = Gr(H∗(E8; Z/5)),

it is easily seen that

Therorem 4 There is an algebra isomorphism :

H∗(ΩE8; Z/5) ∼= Z/5[t2n(j)|1 ≤ j ≤ 8]/(t2
5)⊗ Z/5[t10].

(Remark) The algebra was determined first in [9].

Let σ denote the homology suspension. Examining the spectaral se-
quence, we have the following proposition.

Proposition 5 σ(t2n(j)), (1 ≤ j ≤ 7), and σ(t10) are nontirivial primitive
elements in H∗(E8; Z/5).
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3 Coproducts, cohomology operations and ad-

joint actions

Let ( )∗ denote the dual as to the monomial basis of {xi} and put yi = (xi)
∗.

We recall the adjoint action which was mentioned in [8]. Let ad : G×G →
G and Ad : G × ΩG → ΩG be the adjoint actions for the Lie group G.
Consider the induced maps of homlogy groups :

ad∗ : H∗(G)⊗H∗(G) → H∗(G),

Ad∗ : H∗(G)⊗H∗(ΩG) → H∗(ΩG).

Put y ∗ y′ = ad∗(y ⊗ y′) and y · t = yt = Ad∗(y ⊗ t).
Our result is the following.

Therorem 6 In H∗(E8; Z/5), there are y2n(j)+1,(1 ≤ j ≤ 7), y11 and y12

satisfying that

yi y3 y11 y12 y15 y23 y27 y35 y39 y47

y12 ∗ yi y15 y23 0 y27 y35 y39 y47 0 0
P1
∗yi 0 y3 0 0 y15 0 y27 0 y39

β∗yi 0 0 y11 0 0 0 0 0 0

All yi are primitive and y12 ∗ yi = [y12, yi] = y12yi − yiy12.

(Remark) This result coincides with that of §46 - 2 of [5].
From now on, we prove this theorem combining the adjoint actions on

H∗(E8; Z/5) and H∗(ΩE8; Z/5).
Dualizing the properties of ad∗ and Ad∗ stated in [8], we have

Proposition 7 For y, y′, y′′ ∈ H∗(G) and t, t′, t′′ ∈ H∗(ΩG)

(1) 1 ∗ y = y, 1 · t = t.

(2) y ∗ 1 = 0 and y · 1 = 0, if |y| > 0.

(3) (yy′)t = y(y′t).

(4) y(tt′) = Σ(−1)|y
′′||t|(y′t)(y′′t′), where ∆∗y = Σy′ ⊗ y′′ is the coproduct.
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(5) φ(y · t) = ∆∗(y) · φ(t), where φ is the coproduct and
(y′ ⊗ y′′) · (t′ ⊗ t′′) = (−1)|y

′′||t′|(y′t′ ⊗ y′′t′′).

(6) σ(y · t) = y ∗ σ(t), where σ is the homology suspension.

(7) If y is primitive then y ∗ y′ = [y, y′], where [y, y′] = yy′ − (−1)|y||y
′|y′y.

(8) If t is primitive then y · t is also primitive.

(9) Pn
∗ (y ∗ y′) = ΣiPn−i

∗ y ∗ P i
∗y
′ and Pn

∗ (y · t) = ΣiPn−i
∗ y · P i

∗t.

(Remark) In our case, |t| and |t′| are always even. So y(tt′) = Σ(y′t)(y′′t′)
and (y′ ⊗ y′′) · (t′ ⊗ t′′) = (y′t′ ⊗ y′′t′′).

To state the non-commutativity of H∗(E8; Z/5), we need only the fact :

Lemma 8 [y12, y3] 6= 0.

[Proof] Suppose that [y12, y3] = 0. Then H∗(E8; Z/5) ∼= Λ(y3, y11, y15) ⊗
Z/5[y12] for ∗ < 23. Let {E ′

r} be the Rothenberg-Steenrod spectral sequece
coversing to H∗(BE8; Z/5). Then we have

E ′
2
∼= Z/5[s(y3), s(y11), s(y15)]⊗ Λ(s(y12))

for total degree < 24. Since E ′
2 = E ′

∞ in these degrees, there are inde-
composable elements z4, z12, z16 and z13 in H∗(BE8; Z/5) corresponding to
s(y3), s(y11), s(y15) and s(y12), respectively. Especially,z4z13 6= 0. It is a
contradiction. (For detail, see Lemma 5.3 and 5.4 of [6].)

Therefore [y12, y3] is the nontrivial primitive element. So we may define
y15 by that.

Proposition 9 [y12, y3] = y15.

Since σ(y12t2) = y12 ∗ σ(t2) = y12 ∗ y3 = [y12, y3] = y15, y12t2 is the indecom-
posable element. Thus we may assume that

t14 = y12t2. (5)

Then t14 is primitive and σ(t14) = y15.
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Let φ be the coproduct of H∗(ΩE8; Z/5) and φ(t) = φ(t)− t⊗ 1− 1⊗ t.
( )∗ denotes the dual as to the monomial basis of {t2j}. Multiplying ai and ti
by nonzero scalars or moving them modulo decomposable if we need, we may
assume that a2n(j) = (t2n(j))

∗, (1 ≤ j ≤ 8), a2
5 = (t10)

∗ and a50 = (t10
5)∗. As

t10 is dual to a2
5, it is easily verified that

φ(t10) = 4t2
4 ⊗ t2 + 3t2

3 ⊗ t2
2 + 3t2

2 ⊗ t2
3 + 4t2 ⊗ t2

4. (6)

P1a2 = a2
5 implies P1

∗ t10 = t2. Define t′22 by y12t10 − t2
4t14. Then by (6)

and Proposition 7, φ(t′22) = ∆∗(y12)φ(t10) − φ(t2)
4φ(t14) = t′22 ⊗ 1 + 1 ⊗ t′22.

On the other hand, since P1
∗y12 and P1

∗ t14 are trivial, P1
∗ t
′
22 = y12P1

∗ t10 =
y12t2 = t14. So t′22 is nontrivial and primitive. Put t22 = t′22. Now we obtain
the following equations.

y12t10 = t22 − t2
4t14, (7)

P1
∗ t22 = t14. (8)

Using Proposition 7 and y12
5 = 0, we can compute y12

4t22, that is,

y12
4t22 = y12

4(y12t10 + t2
4t14)

= y12
5t10 + y12

4(t2
4t14)

= y12
4(t2

4t14)

Here, since y12tj (j = 14, 26, 38) is primitive, there exists ρj ∈ Z/5 such that
y12tj = ρjtj+12, where t50 = t10

5. Note that y12(t10
5) = 0. Therefore modulo

the ideal (t26, t38, t10
5), we have

y12
4(t2

4t14) ≡ 4y12
3(t2

3t14
2) ≡ 12y12

2(t2
2t14

3) ≡ 24y12(t2t14
4) ≡ −t14

5.

But, since y12
4t22 is primitive, we obtain y12

4t22 = −t14
5. This means that

y12
it22, (1 ≤ i ≤ 4), are nontrivial primitive elements. Therefore we can

define the generators so that

t22+12i = y12
it22, (1 ≤ i ≤ 3). (9)

Next we will observe y12
it14, (1 ≤ i ≤ 3). Since P1

∗ t58 is primitive, there
is ε ∈ Z/5 such that P1

∗ t58 = εt10
5. On the other hand, from Proposition 3,

P1a50 ≡ a58 (up to non zero coefficient and modulo decomposable). Dualize
it, then we can see ε 6= 0. Re-define t58 by ε−1y12

3t22. We have
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Proposition 10
y12

3t22 = εt58, (10)

P1
∗ t58 = t10

5. (11)

From this, y12
3t14 = y12

3P1
∗ t22 = P1

∗ (y12
3t22) = P1

∗ (εt58) = εt10
5. So we

can fix
t14+12i = y12

it14, (1 ≤ i ≤ 2). (12)

By P1
∗ (y12

it2k) = y12
iP1
∗ t2k, P1

∗ is determined on all t2k.

We summarize the results.

Therorem 11 In Therem 4, we can chose the generators satisfying the fol-
lowing table :

t2j t2 t10 t14 t22 t26 t34 t38 t46 t58

y12t2j t14 t22 − t2
4t14 t26 t34 t38 t46 εt10

5 εt58 −ε−1t14
5

P1
∗ t2j 0 t2 0 t14 0 t26 0 t38 t10

5

All t2k, (k 6= 5) are primitive and

φ(t10) = 4t2
4 ⊗ t2 + 3t2

3 ⊗ t2
2 + 3t2

2 ⊗ t2
3 + 4t2 ⊗ t2

4.

[Proof of Theorem 6] Put y2n(j)+1 = σ(t2n(j)),(3 ≤ j ≤ 7). Theorem 6 is
an immediate consequence of Theorem 1, Theorem 4 and Proposition 5 with
Proposition 7.

Fix the basis of H∗(E8; Z/5) :

{Π7
j=1y2n(j)+1

ε2n(j)+1y11
ε11y12

e|0 ≤ εi ≤ 1, 0 ≤ e < 5}.
Let ( )∗ be the dual with respect to the above basis. We may assume that
x2n(j)+1 = (y2n(j)+1)

∗, (2 ≤ j ≤ 7). Let ϕ be the coproduct of H∗(E8; Z/5)
and ϕ(x) = ϕ(x) − x ⊗ 1 − 1 ⊗ x. Then the following theorem is easily
obtained by dualizing Theorem 6.

Therorem 12 In Theorem 1, we can chose the generators satisfying follow-
ing tables:

xi x3 x11 x12 x15 x23 x27 x35 x39 x47

P1xi x11 0 0 x23 0 x35 0 x47 0
βxi 0 x12 0 0 x12

2/2 0 x12
3/3! 0 x12

4/4!
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xi ϕxi

x15 x12 ⊗ x3

x23 x12 ⊗ x11

x27 x12 ⊗ x15 + x12
2/2⊗ x3

x35 x12 ⊗ x23 + x12
2/2⊗ x11

x39 x12 ⊗ x27 + x12
2/2⊗ x15 + x12

3/3!⊗ x3

x47 x12 ⊗ x35 + x12
2/2⊗ x23 + x12

3/3!⊗ x11

(Remark) In [6], x2n(j)+1, (4 ≤ j ≤ 7), are chosen as our 2x27, 2x35, 3!x39

and 3!x47 respectively.
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