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1 Introduction

Let p be a prime number and G be a compact, connected, simply con-
nected and simple Lie group. Let 2G be the loop space of G. Bott showed
H.(QG;Z/p) is a finitely generated bicommutative Hopf algebra concentrated
in even degrees, and determined it for classical groups G ([1]).

Here, let G be an exceptional Lie group, that is, G = Gq, Fy, Fg, E7, Eg.
In [2], K.Kozima and A.Kono determined H,(QG;Z/2) as a Hopf algebra
over Ay, where A4, is the mod p Steenrod Algebra and acts on it dually.

Let Ad: G x G — G and ad : G x QG — QG be the adjoint actions of
G on G and QG respectively. In [3], the cohomology maps of these adjoint
actions are studied and it is shown that H*(ad;Z/p) = H*(p2;Z/p) where
pe is the second projection if and only if H*(G;Z) is p-torsion free. For
p = 2,3 and 5, some exceptional Lie groups have p-torsions on its homology.

*Partially supported by JSPS Research Fellowships for Young Scientists.
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Moreover in [8, 9] mod p homology map of ad is determined for (G,p) =
(Go,2),(Fy,2),(Fs,2),(E7,2) and (Eg,5). This result is applied to compute
the A5 module structure of H,(Q2Es;Z/5) and H*(Eg;7/5) in [9].

For a compact and connected Lie group G, the free loop group of G is
denoted by LG(G), i.e. the space of free loops on G equipped with multipli-
cation as

¢ Y(t) = o(t) - ¥(t),

and has Q)G as its normal subgroup. Then
LG(G)/QG =G,

and identifying elements of G with constant maps from S to G, LG(G) is
equal to the semi-direct product of G and (2G. This means that the homology
of LG(G) is determined by the homology of G and 2G as module and the
algebra structure of H.(LG(G); Z/p) depends on H,(ad; Z/p) where

ad : G x QG — QG

is the adjoint map. Since the next diagram commutes where \,\ and pu
are the multiplication maps of QG, LG(G) and G respectively and w is the
composition

(1QG x T % lG) o (]_QGXG X ad X lG) o (IQG X AG X 1ggxg),

WG XxGXxQGXxEG —Y+QGxAGx G x G 2 2XH0G x G

~ ~ ~
= X =

LG(G) X LG(G) N -LG(G)

we can determine directly the algebra structure of H,.(LG(G); Z/p) by the
knowledge of the Hopf algebra structures of H.(G;Z/p), H.(QG; Z/p) and
induced homology map H.,(ad; Z/p). See Theorem 6.12 of [8] for detail.

In this paper we determine the Hopf algebra structure over Az of the
homology group H.(Q2G;Z/3) for G = Fy, Eg, E7 and Eg by using adjoint
action and determine the mod 3 homology map of ad for them. The result
is shown in §2.

This paper is organized as follows. We refer to the results of [4, 5, 6] for
the structure of H*(G) and compute H*(Q2G) for the lower dimensions and
their cohomology operations are partially determined. This is done in §3.
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In §4 we turn to their homology rings. We determine the algebra structure
of H.(QG ;Z/3) and we partly determine the Hopf algebra structure and
cohomology operations on H,(2G;Z/3). Finally in §5 the homology map of
the adjoint action and the rest of the Hopf algebra structure and cohomology
operations are determined. The computations are completely algebraic.

2 Results

Let G(I) be the compact, connected, simply connected and simple exceptional
Lie group of rank [ where [ = 4,6,7 or 8. The exponents of G(I) are the
integers n(1) < n(2) < --- < n(l) which are given by the following table :

[ n(l), n2), . ,n()

411 5 7 11

611 4 5 7 8 11

71 5 7 9 11 13 17

811 7 11 13 17 19 23 29

Put E(I) = {n(1),---, n(l)} and ¢(t) = A.(t) — (t ® 1+ 1®¢t) where A
is the diagonal map. P* is the dual of the Steenrod operation P*. Then the
results are following :

Therorem 1. As a Hopf Algebra over As,

. -~ Z/B[tgj‘ € E(l)U {3}]/(t23), if 1l =4,6,7
HQG1):2/3) = {Zﬂwwéefﬂ&uwa9ﬂﬂm%%%, ifl=8

where |ty;| = 27.

0, if 7 # 3,9,
Bty = T RR-hOR ifi=3
J t22t6? @ty + tats? @ to? — t6® @ tg — ta’ts @ totg
—tals @ t°ts — Lo @ t6” + t2® @ tots® + by @ to’te?, if j =9,
Pfrtgj = O, Zf r> 3,
POty — { l22, if j =29,

0, otherwise.
Plty; and Pty are given by the following table:
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12F ‘tQ g tg tio tia tie t18 too  Tog l34 t38 tag  Iss

Pitgj 0 t2 0 0 th 0 €t14 — t2t62 /€t63 €t22 —Etlog €t34 €t143 tlgg
Py |0 0 0 0 0 O to 0  tia tm  —ly tz O

where € and k are 1 or —1.

(Remark) In Theorem 1, if t5; does not exist in H,.(2G(l) ;Z/3), we regard
ty; as 0 for such j.

Let Ad: G x G — G and ad : G x QG — QG be the adjoint actions of
a Lie group G defined by Ad(g,h) = ghg™" and ad(g,1)(t) = gl(t)g~" where
g,he G, 1€ QG and t € [0,1]. These induce the homology maps

Ad, : H.(G;Z/3)® H.(G;Z/3) — H.(G;7Z/3)
ad, : H.(G;Z/3)® H.(QG ;7Z/3) — H.(QG ;7/3).
Therorem 2. There are generators ys in H.(G(1);Z/3) forl =4,6,7 and ys

and yo0 in H.(Eg;Z/3). We can choose these generators so that ad,(y; ® ta;)
(i =8,20) is given by the following table.

toj ad, (ys @ ta;) ad, (Y20 ® ta;) to; | adi(ys @ taj)  adi(ya ® tay)
la 10 €ta 22 —t10° —t14°

le t14 — tigts? tos — €loots® l26 l34 —146

ls 16 — 34 —t14® et1g®

t10 Kitg® — l3s —t46 l5s

14 l92 l34 4 —et1s® eto®

16 ots® — t58 —etgy® —t96”

tis | tog + tiote*ta® — tiate®  tas + etagt®la® — togls”

where e € 7/37Z and € # 0. For other generators y; € H.(G(l);7Z/3),
ad(y; @ taj) =0 for all j.
3 The mod 3 cohomology groups

We recall the results of [4, 5, 6] for the structure of H*(G(l); Z/3) as the Hopf
algebra over As.



Therorem 3. There is an isomorphism :

Mwojalj € E(1) U{3} — {11}) ® Z/3[xs]/ (ws®), if 1=4,6,7,
H*(G(l), Z/3) = A(asgjﬂ\j c E(8) U {3, 9} — {11, 29}) X Z/3[ZB&$20]/($83, .T203),

if l =8,
the coproduct is given by :
Ti PT;
Ti1 Ty ® T3
T15 Ty & X7
T17 Ty & Ty
Lot T (059 T19 -+ 20 X XT7
I35 xTs (059 To7 — l’82 (059 T19 + To0 X T15 + TgTog (%9 it
39 Too & T19
Ty7 —Tg @ T3g — Tag @ Loy — LopTy ® T1g + Log” @ Ty
others || 0
and the cohomology operations are determined by the following table:
T T3 | Ty | Tg | L9 | T11 | Tis | Li7 | T19 | T20 To7 I35 39 Ty7
ﬁl’i 0 T 0 0 0 —1’82 0 T20 0 T8I0 —Z)’ngl’go —[EQOQ IgZEQOZ
Plxi Ty 0 0 0 15 €T19 0 0 0 0 €T39 0 0
P3LUZ' 0 T19 | T20 0 0 To7 0 0 0 —T39 Tya7 0 0

where € is 1 or -1.
If r > 1 then P¥ x; = 0.

(Remark) We consider x; in these tables as 0 when z; ¢ H*.

Recall a Serre fibration:
QG(Il) — x — G(). (A)

First, we compute H*(2G(1);Z/3) by the Serre spectral sequence associated
with the fibration (A). This spectral sequence has a Hopf algebra structure.
We can proceed to compute it using degree-reason and Kudo’s transgression
theorem ([7]) from the previous theorem. For j € E(l) — {9,11,29}, there
are universally transgressive elements as; € H*(2G(1); Z/3), such that Tay; =
Z9j4+1. Thus we can show that for j = 9,11,15,21,27 and 29, there are ay;
such that satisfy




d:(1®a) = 17®a’, forl=46,7,

= 211 Q@ay’, forl=4,6,7,
T15 & CL1427 for [ = 87

375> ® ay?, forl=4,6,7,8,
Ty @ ax'®,  for [ =8,

= X7xe0® ®as’, for | =8.
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as;'s are generators of the cohomology group in the low dimensions. The
results are the following:

Proposition 4. For the dimensions less than 2n(l) + 2, the next isomor-
phism holds :

Z/3laz;|j € E() U{9}]/(a2”), if | = 4,6,
H*(QG(1);2/3) = § Z/3az|j € E(7) U {15}]/(a10”), ifl="1,
Z/3[a2j]j S E(S) U {21, 27}]/(@227, a143), Zfl = 8.

Now we start to determine the cohomology operations and the coproducts
on ag;.

Therorem 5. For j € E(l) —{9,11,29} ay; € H*(QG(1);Z/3) is primitive
and cohomology operations are determined by

Q2 ‘ az dg Q10 G14 A1 Q26 Q34  G33 Qg6
Plagj a23 0 a4 6(129 0 0 €asg 0 0
7)3(12j 0 0 0 26 0 —Aass 46 0 0

If r > 1 then P¥ ag; = 0.

Proof. For j € E(l) —{9,11,29}, ay; is transgressive, therefore Play; =
Pioraj1 = 0P'a;11. Thus this can be determined by Theorem 3. 1

For the investigation of as; which is not transgressive we start from the fol-
lowing theorem. In the next theorem, ¢ means the coproduct of H*(Q2G;Z/3)
and we set ¥(a) = (a) — (a®@1+1®a).



Therorem 6. For j = 9,15,21,27, vay; is given by the following formula:

as® ® asb + a2’ ® as?, ifj =9,

alo @ aip® + a0 ® ayo, if 7 =15,
a1s @ ara® + a14® ® a, if j =21,
as’ @ as'® + ax'® ® ax®,  if j =27,

Eazj =

Proof.  To begin with, we investigate the element a5. Let ai, be the
generator of H?(Q2Fy;Z). H*(Q2Fy;Z) has no torsion and is a commutative
Hopf algebra over Z. Since ay® = 0, there is a/g such that a}” = 3a/g and
pats # 0, where p is modulo 3 reduction. Then we can choose ag as palg.
The coproduct of a)g is computed as follows:

talg = 1/3vay’
= 1/3(1®d,+ay®1)°
= dy®1+d’®ad’+d’®d’+1®d (mod 3).

Thus Yag = as® ® as® + 2% ® as? is shown.
Consider the inclusion ¢ : Fy — E7, we chose a1s € H*(2E7;7Z/3) so as
to satisfy (£2¢)*a1s = a1s. Because (€2t)* is injective for degrees less than 18,
Yag = as® @ a2’ + 2% ® as? is shown again for this a;5. And in the similar
way we put azg = 1/3a10%, aso = 1/3a14® and asy = 1/3a,%" and obtain the
coproduct formulas of the statement. 1
We remark that we can assume that ass and asg are primitive.

Therorem 7. In Proposition 4 we have that Plaig = £ass.

Let G(I) be the 3—connected cover of G(I) and

QG — o« — G (B)
G 5 Gl -5 K(Z,3) (C)
QG() 2 ac() - K(z,2) (D)

be Serre fibrations. To prove Theorem 7 we have to compute H*(QG;Z/3)
and H*(G;7/3).

Let as; be (2p)*ag;, for j # 1. Using the Serre spectral sequence asso-
ciated with the fibration (D), one can easily show that there are generators
ai; € H' for | = 4,6, and as3 € H® for | = 8. We have the following
proposition. Let denote E(l) — {1} as E(1).
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Proposition 8. For the dimensions less than 2n(l) + 2, the next isomor-
phism holds :

. Z/3[az)j € E(1) U{9}] © A(ar), if 1 =4.6,
H*(QG(1);2/3) = { Z/3as;15 € E(T) U {15}]/ (@), ifl="1,
Z/3las,|j € E(8)U{21,27}]/(al,) @ Aass),  if 1 =8.

By computing the Serre spectral sequence associated with (B), it is easy
to see dgj, (j # 15,21) is universally transgressive. Let Z;41 be 7@;. Then we
have the following:

Proposition 9. For the dimensions less than 2n(l) + 2, the next isomor-
phism holds :

5 A(#2541]j € E(1) U{9}) © Z/3[ing], if 1 =4,6,
1 (G(0):2/3) = { AGaynlj € B(7). =T
A(Z2j1]j € EQ®)UA{2T}) ® Z/3[254),  if I =38.

Proof of Theorem 7. Tt is possible to show that Pla,g is not zero as follows.
Let ¢’ denotes the cohomology suspension associated to the fibration (C) for
[ = 4. Tt is easy to see T19 = o/ BP3Pluz and To3 = o’ (BPlus)?, where us
is the generator of H*(K(Z,3);Z/3). So we get Pliig = o'PP*Plug =
o'PipPlus = o' (BPuz)® = o3, and from this, we have (Qp)*Plag =
PLUOp)*as = Plawg = PloZig = oPTig = 0Te3 = Gz, where o is the
cohomology suspension associated to (B). Thus Plaig # 0. We fix ag as
771@18. 1

4 Homology groups

Therorem 10. The homology ring of QG() is

(231l € EQ) U {31/, ifl=4.6.7
H.(QG(1);2/3) = { Z/3[t2j|§' € E(8)U 3,90/ (% ts%),  ifl—S$.
(1)

where |taj| = 25. The coproduct is given by

0, if 7 #3,9,11,29,
5(752-) _ — 12 ® ty — ty ® ty?, if j =3,
’ ta’te® ® ta + tote® @ty — t° @ ts — ta’ts @ tatg
—totg ® to’ts — tg @ te> + ta® ® tate? + to @ ta’te?, if j=9.



Proof. Let ty; be the dual element of as; € H,(2G;Z/3) as to the monomial
basis for j € E(I)—{9} and tg, 113 be the dual element of as?, as?, respectively.
It is easy to see ty® = tg® = 0 and to show the coproduct formula for t¢ and
t1s. Thus we can say that statement (1) is true for x < 2n(l) + 2.

Now it is possible to show that there is no truncation in H,(QG;Z/3)
other than the parts generated by t5 and s and that (1) holds for all dimen-
sions. Since H.(QG(1);Z/3) is the even degree concentrated commutative
Hopf algebra, we may suppose

H.(QG(1);Z/3) = Z/3[usli € T) @ Z/3[v;|5 € J)/(v;*" |5 € J).
Consider an Eilenberg - Moore spectral sequence :

Since Ey = A(sw;|i € 1) ® A(sv;j € J) ® Z/3[0v;]j € J], where deg su; =
(1, |wi]), degsv; = (1,]v;]), and degfv; = (2,3 |v;]), the essential differen-
tials have the forms : dysu; = (6v;)%"7 (k; > 1) or dysv; = (Bvy)*7 (I; > 1).
Because H*(G(1);Z/3) is a finite dimensional vector space, one can easily
show

B = A(suili € I'\@A(sv;]j € J)@Z/3[0v;|5 € J)/((0v;))* i € J), (I'CI,J CJ)

and |I'|+|J'| = |I]. Here the total dimension of E, is N 1+17132 e ™5 (m; >
1) and the total dimension of H*(G(l); Z/3) is 21PWI3/0 where f(I) = 1 for
Il =4,6,7and f(I) = 2 for [ = 8. Thus the indices J of the truncation part
satisfy that |J| < f(I) and |I| = |E(l)|. This means that the truncation parts
of H.(QG;7Z/3) is generated by only to and .

Therefore H,(2G(1) ;7Z/3) has the form

Z/3|uli € I) @ Z/3[ts]/ (t23) for | = 4,6,7 and
Z/3[UZ|Z < [] X Z/3[t2,t6]/(t23,t63) for [ = 8.

Also Theorem 5 means that for j € E(I) — {9} ty; is primitive and indecom-
posable and tg, t1s are indecomposable. Thus

{ta;l7 GE(Z)}U{%} CA{ulie I} forl=4,6,7and
{tojl7 € E(I)} U{tis} C{wli € I} forl=28.



Since |I| = |E(l)], the theorem is proved. 1

Dualizing the result of Theorem 5 and Theorem 7, we obtain the state-
ment of Theorem 1 except for Pltyg, Pltay, Pitay, Pltss, Pltss and Ptss. To
determine these operations, we use the adjoint action of H,(G(l);Z/3) on
H.(QG(l) ;7Z/3) which is introduced in the next section.

(Remark)The computation of dualizing the result of Theorem 5 and Theo-
rem 7 is not difficult except for Plt,g, because Pt is primitive if ¢ is primitive.
Moreover, it is easily shown

O(Pit1s) = Plo(tis) = ¢(—tate”)

and this shows Plt;g = —tots? modulo primitive elements. By Theorem 5 we
can see Playy = eay® and this shows that Pltig = etyy — tots>.

5 Adjoint action
Put yxy = Ad.(y ® ') and y x t = ad,(y ® t) where y,y' € H.(G;Z/3) and
t € H.(QG ;Z/3). Following are the dual result of [3]. Also see [9].
Therorem 11. Fory, v, y" € H.(G;Z/3) and t, t' € H.(QG ;7Z/3)

(i) I1xy=y, 1xt="1.

(ii)) y*1=0,if |y| > 0, whether 1 € H.(G;Z/3) or 1 € H.(QG ;7Z/3).
(i) (yy')*t=yx(y *t).
(iv) g (1) = S(=1)W Wy« t)(y" + ') where Ay =Xy @y".

)

)

(v) o(y xt) =y o(t) where o is the homology suspension.

(i) Py 1) = 5, (Piy) + (Pit).
Pily*y') = 2:i(Puy) * (Pr'y).
(vii)
Ay =t) = (Aw)*(Asl)
SOV x ) @ (v +t)
where Ay =3y Q" and At =3t @t".
And A, (y xt) = (Ayy) * (ALt).
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(viii) Ift is primitive then y t is primitive.
Also the result of [3] implies the following theorem. See [8].

Therorem 12. We set a submodule A of H.(G;Z/3) as

A = Z/3[y8]/<y83) fOTG: F47E67E7 CLTLd
A Z/3ys, y20]/ (ys®, y20®) for G = Es

where 1yo; is the dual of xo; with respect to the monomial basis. Then there
exists a retraction p : H.(G;7Z/3) — A and the following diagram commutes.

H.(G:7/3) ® H(QG :7/3) —%%  g.(0G ;7/3)
p®1 ad

A® H.(QG ;7/3)

(Remark)By Theorem 3 we can see P3yqg = ys.

Since Ad, is agreed with the composition o (1® ) o (1®1® )0 (1®
T)o (A, ® 1) where u is the multiplication of G(I) and ¢ is the inverse map,
the next theorem follows. See [9].

Therorem 13. Let y,y' € H.(G). If y is primitive,
y*xy =y, 9y
where [y,y'] = yy' — (—1)‘y||y/‘y’y.

Now we give the proof of Theorem 2 and finish the proof of Theorem 1.
Let y; be the dual element of z; € H*(G(l)) as to the monomial basis. By
Theorem 3 and Theorem 13 we see that for j € E(I) U {3,9} — {11,29}

Y25+9 for j = 17 37 47 97 137
Ys * Y241 = —Y25+9 for j = 19,
0 others
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and .
Y25+21 for j =3,7,9,

Y20 * Y2541 = { —Yajyo1 for j =13,
0 others .
Since otyj = ya;41 for j € E(I) U{3,9} —{11,29}, Theorem 11 (v) implies

O'(yg*tgj) 7é 0 fOI'j = 1,3,4,9, 13,19, (2)
O'(yzo * t2]) §£ 0 for ] = 3, 7, 9, 13.

Then the equations

ysxla = to, (3)
ys*ts = tig, (4)
Ys *log = la4, (5)
Ys xlzs = —tu, (6)
Y20 ¥ tia = t34, (7)
Y20 ¥ tag = —lag (8)

are shown by Theorem 11 (viii). Moreover (2) implies

Ysxte = tua, 9)
Ys ES t18 = t267 (10)
UYo0 * tﬁ = t267 (11)
Y20 * t18 = t38 (12)
modulo decomposable elements. Since
O(yskte) = —(ys*to) @ta” — (Ys *12%) @ty — by @ (ys * ta”) — ta> @ (ys * ta)
= ¢(—tots?),
one can see that yg * tg = —t19t2? mod primitive elements. By this and (9),
we have
Ys * tﬁ = t14 — t10t22. (13)
The equations
Ys ktig = tog + tiota’ts” — tiats”, (14)
Yoo ¥ ts = tos — (Yoo * ta)ta?, (15)
Yoo ¥ tis = tag — (Yoo * te)ts" (16)
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are shown in the similar way.
By the equation (13), we can compute yg® @ tg as
ys® wtg = ys® * (t1a — tiota”)
= ys®*t1a + tio”.

Since yg® = 0, yg2*t14 = —t10> and this means yg * 14 is a non-zero primitive
indecomposable element. We redefine 95 as

t22 = Ys k t14. (17)
Then we have
Ys * tog = —t10°.
By Theorem 7 we can set Pltyy, = ktg® where k = £1. Since Pltyy =

PlL(yg x t14) = yg * t10, we have
Ys * tio = Klg".

By the similar manner, we can compute yg® * t13 and obtain yg? * tog =
—t143. Therefore

Ys * tag = ys” * tog = —l14°. (18)

Because t15 and t44 are primitive, we can set
ys ktig = pats’ (19)
ys *tis = pstis’ (20)

Operate P2 to (20) to obtain
Ys * b3 = Plys * tag) = psP; (t1s”) = psetrs®.

Thus by (18), we conclude that p3 = —e. yg * t5s will be determined after the
determination of 99 * ts5g.
Here we apply P! on (5), (6) and (14), P2 on (5) to see
Pltas = Pl(ys * tis — tiote’ta” + tiate’)
= €yg *k 1y = €t
Pltss = Plys * tag) = €ys * tar = —€t1p°,
Pltis = —Pl(ys*tss) = —€ys * tgs = el14”,
Pllss = Plys * tag) = ys * tia = ton.
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Next we compute yag * to;. First we apply P! to (15) to obtain
Yoo * b = Pl (yag * tg) = Pltas — (Yoo * ta)ts”) = eloo.
From this, (15) and (16) imply that

Yoo kLo = €lag,
Yoo ¥t = tog — clonty?,
Yoo ¥ tig = tag + etoate’ts® — togts”.

20> * g is computed as
0=1y20’*ts = Yoo * (Yoo * tg)
= Yoo * (tas — €laats?)
= Yoo * tog + €tar”.
Thus Yoo * tag = —Y20” * tag = €lon®.
The similar computation of 90> * t15 implies
Yoo” * tag = —tag".

Thus 140 * 35 is a non zero primitive indecomposable element and we redefine
58 as Yo * t3g. Hence

Yoo *¥lgg = tss, (21)
Yoo ¥ tss = —tlog". (22)
By applying P2 to (22), we have
ys * tsg = P2 (a0 * tss) = —P3 (tas”) = —etn®.
We obtain also
Yoo * tay = €PL (Yoo * tag) = —€Prtasg = —t1s°

by applying P! to (8).
Since t34 is primitive, we can set Yoo * t34 = pat1s® (ps € Z/3). Operating
P2 to the both sides of this equation, pset4® is computed as follows:
pactis® = psP2(t1s°)
= Pl(ya0 * t3a)
= Ys *t34 + Yoo * to2

3
t14 .
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S0 Yoo * tg4 = €t15® is shown. Now ad, is determined except for ys * t16.
Finally we operate P! to (21) and P? to (22) and see

Pltss = Py (yao * tss) = oo * (Pltss) = €yoo * taa = t1s”,
Yoo * (Pltss) = Py * tss) = —P2(tas”) = —t1a”.
These equations imply that
Pltss = tis”, Pitss = too.
This completes the proof of Theorem 1.
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