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1 Introduction

Let p be a prime number and G be a compact, connected, simply con-
nected and simple Lie group. Let ΩG be the loop space of G. Bott showed
H∗(ΩG; Z/p) is a finitely generated bicommutative Hopf algebra concentrated
in even degrees, and determined it for classical groups G ([1]).

Here, let G be an exceptional Lie group, that is, G = G2, F4, E6, E7, E8.
In [2], K.Kozima and A.Kono determined H∗(ΩG; Z/2) as a Hopf algebra
over A2, where Ap is the mod p Steenrod Algebra and acts on it dually.

Let Ad : G × G → G and ad : G × ΩG → ΩG be the adjoint actions of
G on G and ΩG respectively. In [3], the cohomology maps of these adjoint
actions are studied and it is shown that H∗(ad; Z/p) = H∗(p2; Z/p) where
p2 is the second projection if and only if H∗(G; Z) is p-torsion free. For
p = 2, 3 and 5, some exceptional Lie groups have p-torsions on its homology.

∗Partially supported by JSPS Research Fellowships for Young Scientists.
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Moreover in [8, 9] mod p homology map of ad is determined for (G, p) =
(G2, 2), (F4, 2), (E6, 2), (E7, 2) and (E8, 5). This result is applied to compute
the A5 module structure of H∗(ΩE8; Z/5) and H∗(E8; Z/5) in [9].

For a compact and connected Lie group G, the free loop group of G is
denoted by LG(G), i.e. the space of free loops on G equipped with multipli-
cation as

φ · ψ(t) = φ(t) · ψ(t),

and has ΩG as its normal subgroup. Then

LG(G)/ΩG ∼= G,

and identifying elements of G with constant maps from S1 to G, LG(G) is
equal to the semi-direct product of G and ΩG. This means that the homology
of LG(G) is determined by the homology of G and ΩG as module and the
algebra structure of H∗(LG(G); Z/p) depends on H∗(ad; Z/p) where

ad : G× ΩG → ΩG

is the adjoint map. Since the next diagram commutes where λ,λ′ and µ
are the multiplication maps of ΩG, LG(G) and G respectively and ω is the
composition

(1ΩG × T × 1G) ◦ (1ΩG×G × ad× 1G) ◦ (1ΩG ×∆G × 1ΩG×G),

LG(G)× LG(G)

ΩG×G× ΩG×G ΩG× ΩG×G×G ΩG×G

LG(G)

- -

-
? ?

ω λ× µ

∼= × ∼= ∼=
λ′

we can determine directly the algebra structure of H∗(LG(G); Z/p) by the
knowledge of the Hopf algebra structures of H∗(G; Z/p), H∗(ΩG; Z/p) and
induced homology map H∗(ad; Z/p). See Theorem 6.12 of [8] for detail.

In this paper we determine the Hopf algebra structure over A3 of the
homology group H∗(ΩG; Z/3) for G = F4, E6, E7 and E8 by using adjoint
action and determine the mod 3 homology map of ad for them. The result
is shown in §2.

This paper is organized as follows. We refer to the results of [4, 5, 6] for
the structure of H∗(G) and compute H∗(ΩG) for the lower dimensions and
their cohomology operations are partially determined. This is done in §3.
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In §4 we turn to their homology rings. We determine the algebra structure
of H∗(ΩG ; Z/3) and we partly determine the Hopf algebra structure and
cohomology operations on H∗(ΩG; Z/3). Finally in §5 the homology map of
the adjoint action and the rest of the Hopf algebra structure and cohomology
operations are determined. The computations are completely algebraic.

2 Results

Let G(l) be the compact, connected, simply connected and simple exceptional
Lie group of rank l where l = 4, 6, 7 or 8. The exponents of G(l) are the
integers n(1) < n(2) < · · · < n(l) which are given by the following table :

l n(1), n(2), ... , n(l)
4 1 5 7 11
6 1 4 5 7 8 11
7 1 5 7 9 11 13 17
8 1 7 11 13 17 19 23 29

Put E(l) = {n(1), · · · , n(l)} and φ(t) = ∆∗(t)− (t⊗ 1 + 1⊗ t) where ∆
is the diagonal map. Pk

∗ is the dual of the Steenrod operation Pk. Then the
results are following :

Therorem 1. As a Hopf Algebra over A3,

H∗(ΩG(l); Z/3) ∼=
{

Z/3[t2j|j ∈ E(l) ∪ {3}]/(t23), if l = 4, 6, 7
Z/3[t2j|j ∈ E(8) ∪ {3, 9}]/(t23, t6

3), if l = 8

where |t2j| = 2j.

φ(t2j) =





0, if j 6= 3, 9,
−t2

2 ⊗ t2 − t2 ⊗ t2
2, if j = 3,

t2
2t6

2 ⊗ t2 + t2t6
2 ⊗ t2

2 − t6
2 ⊗ t6 − t2

2t6 ⊗ t2t6
−t2t6 ⊗ t2

2t6 − t6 ⊗ t6
2 + t2

2 ⊗ t2t6
2 + t2 ⊗ t2

2t6
2, if j = 9,

P3r

∗ t2j = 0, if r ≥ 3,

P9
∗ t2j =

{
t22, if j = 29,
0, otherwise.

P1
∗ t2j and P3

∗ t2j are given by the following table:
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t2j t2 t6 t8 t10 t14 t16 t18 t22 t26 t34 t38 t46 t58

P1
∗ t2j 0 t2 0 0 t10 0 εt14 − t2t6

2 κt6
3 εt22 −εt10

3 εt34 εt14
3 t18

3

P3
∗ t2j 0 0 0 0 0 0 t6 0 t14 t22 −t26 t34 0

where ε and κ are 1 or −1.

(Remark) In Theorem 1, if t2j does not exist in H∗(ΩG(l) ; Z/3), we regard
t2j as 0 for such j.

Let Ad : G×G → G and ad : G× ΩG → ΩG be the adjoint actions of
a Lie group G defined by Ad(g, h) = ghg−1 and ad(g, l)(t) = gl(t)g−1 where
g, h ∈ G, l ∈ ΩG and t ∈ [0, 1]. These induce the homology maps

Ad∗ : H∗(G; Z/3)⊗H∗(G; Z/3) → H∗(G; Z/3)

ad∗ : H∗(G; Z/3)⊗H∗(ΩG ; Z/3) → H∗(ΩG ; Z/3).

Therorem 2. There are generators y8 in H∗(G(l); Z/3) for l = 4, 6, 7 and y8

and y20 in H∗(E8; Z/3). We can choose these generators so that ad∗(yi⊗ t2j)
(i = 8, 20) is given by the following table.

t2j ad∗(y8 ⊗ t2j) ad∗(y20 ⊗ t2j) t2j ad∗(y8 ⊗ t2j) ad∗(y20 ⊗ t2j)
t2 t10 εt22 t22 −t10

3 −t14
3

t6 t14 − t10t2
2 t26 − εt22t2

2 t26 t34 −t46

t8 t16 t34 −t14
3 εt18

3

t10 κt6
3 t38 −t46 t58

t14 t22 t34 t46 −εt18
3 εt22

3

t16 δt8
3 t58 −εt22

3 −t26
3

t18 t26 + t10t6
2t2

2 − t14t6
2 t38 + εt22t6

2t2
2 − t26t6

2

where δ, ε ∈ Z/3Z and ε 6= 0. For other generators yi ∈ H∗(G(l); Z/3),
ad∗(yi ⊗ t2j) = 0 for all j.

3 The mod 3 cohomology groups

We recall the results of [4, 5, 6] for the structure of H∗(G(l); Z/3) as the Hopf
algebra over A3.
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Therorem 3. There is an isomorphism :

H∗(G(l); Z/3) ∼=




Λ(x2j+1|j ∈ E(l) ∪ {3} − {11})⊗ Z/3[x8]/(x8
3), if l = 4, 6, 7,

Λ(x2j+1|j ∈ E(8) ∪ {3, 9} − {11, 29})⊗ Z/3[x8, x20]/(x8
3, x20

3),
if l = 8,

the coproduct is given by :
xi ϕxi

x11 x8 ⊗ x3

x15 x8 ⊗ x7

x17 x8 ⊗ x9

x27 x8 ⊗ x19 + x20 ⊗ x7

x35 x8 ⊗ x27 − x8
2 ⊗ x19 + x20 ⊗ x15 + x8x20 ⊗ x7

x39 x20 ⊗ x19

x47 −x8 ⊗ x39 − x20 ⊗ x27 − x20x8 ⊗ x19 + x20
2 ⊗ x7

others 0
and the cohomology operations are determined by the following table:

xi x3 x7 x8 x9 x11 x15 x17 x19 x20 x27 x35 x39 x47

βxi 0 x8 0 0 0 −x8
2 0 x20 0 x8x20 −x8

2x20 −x20
2 x8x20

2

P1xi x7 0 0 0 x15 εx19 0 0 0 0 εx39 0 0
P3xi 0 x19 x20 0 0 x27 0 0 0 −x39 x47 0 0

where ε is 1 or -1.
If r > 1 then P3r

xi = 0.

(Remark) We consider xi in these tables as 0 when xi /∈ H∗.

Recall a Serre fibration:

ΩG(l) −→ ∗ −→ G(l). (A)

First, we compute H∗(ΩG(l); Z/3) by the Serre spectral sequence associated
with the fibration (A). This spectral sequence has a Hopf algebra structure.
We can proceed to compute it using degree-reason and Kudo’s transgression
theorem ([7]) from the previous theorem. For j ∈ E(l) − {9, 11, 29}, there
are universally transgressive elements a2j ∈ H∗(ΩG(l); Z/3), such that τa2j =
x2j+1. Thus we can show that for j = 9, 11, 15, 21, 27 and 29, there are a2j

such that satisfy
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d7(1⊗ a18) = x7 ⊗ a2
6, for l = 4, 6, 7,

d11(1⊗ a30) = x11 ⊗ a10
2, for l = 4, 6, 7,

d15(1⊗ a42) = x15 ⊗ a14
2, for l = 8,

d19(1⊗ a22) = x3x8
2 ⊗ a2

2, for l = 4, 6, 7, 8,
d19(1⊗ a54) = x19 ⊗ a2

18, for l = 8,
d47(1⊗ a58) = x7x20

2 ⊗ a2
6, for l = 8.

a2j
′s are generators of the cohomology group in the low dimensions. The

results are the following:

Proposition 4. For the dimensions less than 2n(l) + 2, the next isomor-
phism holds :

H∗(ΩG(l); Z/3) ∼=




Z/3[a2j|j ∈ E(l) ∪ {9}]/(a2
9), if l = 4, 6,

Z/3[a2j|j ∈ E(7) ∪ {15}]/(a10
3), if l = 7,

Z/3[a2j|j ∈ E(8) ∪ {21, 27}]/(a2
27, a14

3), if l = 8.

Now we start to determine the cohomology operations and the coproducts
on a2j.

Therorem 5. For j ∈ E(l) − {9, 11, 29} a2j ∈ H∗(ΩG(l); Z/3) is primitive
and cohomology operations are determined by

a2j a2 a8 a10 a14 a16 a26 a34 a38 a46

P1a2j a2
3 0 a14 εa2

9 0 0 εa38 0 0
P3a2j 0 0 0 a26 0 −a38 a46 0 0

If r > 1 then P3r
a2j = 0.

Proof. For j ∈ E(l) − {9, 11, 29}, a2j is transgressive, therefore P ia2j =
P iσx2j+1 = σP ix2j+1. Thus this can be determined by Theorem 3.

For the investigation of a2j which is not transgressive we start from the fol-
lowing theorem. In the next theorem, ψ means the coproduct of H∗(ΩG; Z/3)
and we set ψ(a) = ψ(a)− (a⊗ 1 + 1⊗ a).
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Therorem 6. For j = 9, 15, 21, 27, ψa2j is given by the following formula:

ψa2j =





a2
3 ⊗ a2

6 + a2
6 ⊗ a2

3, if j = 9,
a10 ⊗ a10

2 + a10
2 ⊗ a10, if j = 15,

a14 ⊗ a14
2 + a14

2 ⊗ a14, if j = 21,
a2

9 ⊗ a2
18 + a2

18 ⊗ a2
9, if j = 27.

Proof. To begin with, we investigate the element a18. Let a′2 be the
generator of H2(ΩF4; Z). H∗(ΩF4; Z) has no torsion and is a commutative
Hopf algebra over Z. Since a2

9 = 0, there is a′18 such that a′2
9 = 3a′18 and

ρa′18 6= 0, where ρ is modulo 3 reduction. Then we can choose a18 as ρa′18.
The coproduct of a′18 is computed as follows:

ψa′18 = 1/3ψa′2
9

= 1/3(1⊗ a′2 + a′2 ⊗ 1)9

≡ a′18 ⊗ 1 + a′2
3 ⊗ a′2

6
+ a′2

6 ⊗ a′2
3
+ 1⊗ a′18 (mod 3).

Thus ψa18 = a2
3 ⊗ a2

6 + a2
6 ⊗ a2

3 is shown.
Consider the inclusion ι : F4 −→ E7, we chose a18 ∈ H∗(ΩE7; Z/3) so as

to satisfy (Ωι)∗a18 = a18. Because (Ωι)∗ is injective for degrees less than 18,
ψa18 = a2

3 ⊗ a2
6 + a2

6 ⊗ a2
3 is shown again for this a18. And in the similar

way we put a30 = 1/3a10
3, a42 = 1/3a14

3 and a54 = 1/3a2
27 and obtain the

coproduct formulas of the statement.
We remark that we can assume that a22 and a58 are primitive.

Therorem 7. In Proposition 4 we have that P1a18 = ±a22.

Let G̃(l) be the 3–connected cover of G(l) and

ΩG̃(l) −→ ∗ −→ G̃(l) (B)

G̃(l)
p−→ G(l)

i−→ K(Z, 3) (C)

ΩG̃(l)
Ωp−→ ΩG(l)

Ωi−→ K(Z, 2) (D)

be Serre fibrations. To prove Theorem 7 we have to compute H∗(ΩG̃; Z/3)
and H∗(G̃; Z/3).

Let ã2j be (Ωp)∗a2j, for j 6= 1. Using the Serre spectral sequence asso-
ciated with the fibration (D), one can easily show that there are generators
ã17 ∈ H17 for l = 4, 6, and ã53 ∈ H53 for l = 8. We have the following
proposition. Let denote E(l)− {1} as Ẽ(l).
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Proposition 8. For the dimensions less than 2n(l) + 2, the next isomor-
phism holds :

H∗(ΩG̃(l); Z/3) ∼=




Z/3[ã2j|j ∈ Ẽ(l) ∪ {9}]⊗ Λ(ã17), if l = 4, 6,

Z/3[ã2j|j ∈ Ẽ(7) ∪ {15}]/(ã3
10), if l = 7,

Z/3[ã2j|j ∈ Ẽ(8) ∪ {21, 27}]/(ã3
14)⊗ Λ(ã53), if l = 8.

By computing the Serre spectral sequence associated with (B), it is easy
to see ã2j, (j 6= 15, 21) is universally transgressive. Let x̃i+1 be τ ãi. Then we
have the following:

Proposition 9. For the dimensions less than 2n(l) + 2, the next isomor-
phism holds :

H∗(G̃(l); Z/3) ∼=




Λ(x̃2j+1|j ∈ Ẽ(l) ∪ {9})⊗ Z/3[x̃18], if l = 4, 6,

Λ(x̃2j+1|j ∈ Ẽ(7)), if l = 7,

Λ(x̃2j+1|j ∈ Ẽ(8) ∪ {27})⊗ Z/3[x̃54], if l = 8.

Proof of Theorem 7. It is possible to show that P1a18 is not zero as follows.
Let σ′ denotes the cohomology suspension associated to the fibration (C) for
l = 4. It is easy to see x̃19 = σ′βP3P1u3 and x̃23 = σ′(βP1u3)

3, where u3

is the generator of H3(K(Z, 3); Z/3). So we get P1x̃19 = σ′P1βP3P1u3 =
σ′P4βP1u3 = σ′(βP1u3)

3 = x̃23, and from this, we have (Ωp)∗P1a18 =
P1(Ωp)∗a18 = P1ã18 = P1σx̃19 = σP1x̃19 = σx̃23 = ã22, where σ is the
cohomology suspension associated to (B). Thus P1a18 6= 0. We fix a22 as
P1a18.

4 Homology groups

Therorem 10. The homology ring of ΩG(l) is

H∗(ΩG(l); Z/3) ∼=
{

Z/3[t2j|j ∈ E(l) ∪ {3}]/(t23), if l = 4, 6, 7
Z/3[t2j|j ∈ E(8) ∪ {3, 9}]/(t23, t6

3), if l = 8.
(1)

where |t2j| = 2j. The coproduct is given by

φ(t2j) =





0, if j 6= 3, 9, 11, 29,
−t2

2 ⊗ t2 − t2 ⊗ t2
2, if j = 3,

t2
2t6

2 ⊗ t2 + t2t6
2 ⊗ t2

2 − t6
2 ⊗ t6 − t2

2t6 ⊗ t2t6
−t2t6 ⊗ t2

2t6 − t6 ⊗ t6
2 + t2

2 ⊗ t2t6
2 + t2 ⊗ t2

2t6
2, if j = 9.
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Proof. Let t2j be the dual element of a2j ∈ H∗(ΩG; Z/3) as to the monomial
basis for j ∈ E(l)−{9} and t6, t18 be the dual element of a2

3, a2
9, respectively.

It is easy to see t2
3 = t6

3 = 0 and to show the coproduct formula for t6 and
t18. Thus we can say that statement (1) is true for ∗ < 2n(l) + 2.

Now it is possible to show that there is no truncation in H∗(ΩG; Z/3)
other than the parts generated by t2 and t6 and that (1) holds for all dimen-
sions. Since H∗(ΩG(l); Z/3) is the even degree concentrated commutative
Hopf algebra, we may suppose

H∗(ΩG(l); Z/3) = Z/3[ui|i ∈ I]⊗ Z/3[vj|j ∈ J ]/(vj
3rj |j ∈ J).

Consider an Eilenberg - Moore spectral sequence :

E2 = ExtH∗(ΩG(l):Z/3)(Z/3, Z/3) =⇒ E∞ = Gr(H∗(G(l); Z/3)).

Since E2 = Λ(sui|i ∈ I) ⊗ Λ(svj|j ∈ J) ⊗ Z/3[θvj|j ∈ J ], where deg sui =
(1, |ui|), deg svj = (1, |vj|), and deg θvj = (2, 3rj |vj|), the essential differen-

tials have the forms : drsui = (θvj)
3kj

(kj ≥ 1) or drsvj = (θvj′)
3lj

(lj ≥ 1).
Because H∗(G(l); Z/3) is a finite dimensional vector space, one can easily
show

E∞ = Λ(sui|i ∈ I ′)⊗Λ(svj|j ∈ J ′)⊗Z/3[θvj|j ∈ J ]/((θvj)
3mj |j ∈ J), (I ′ ⊂ I, J ′ ⊂ J)

and |I ′|+|J ′| = |I|. Here the total dimension of E∞ is 2|I
′|+|J ′|3

∑
j∈J

mj , (mj ≥
1) and the total dimension of H∗(G(l); Z/3) is 2|E(l)|3f(l) where f(l) = 1 for
l = 4, 6, 7 and f(l) = 2 for l = 8. Thus the indices J of the truncation part
satisfy that |J | ≤ f(l) and |I| = |E(l)|. This means that the truncation parts
of H∗(ΩG; Z/3) is generated by only t2 and t6.

Therefore H∗(ΩG(l) ; Z/3) has the form

Z/3[ui|i ∈ I]⊗ Z/3[t2]/(t2
3) for l = 4, 6, 7 and

Z/3[ui|i ∈ I]⊗ Z/3[t2, t6]/(t2
3, t6

3) for l = 8.

Also Theorem 5 means that for j ∈ E(l)− {9} t2j is primitive and indecom-
posable and t6, t18 are indecomposable. Thus

{t2j|j ∈ Ẽ(l)} ∪ {t6} ⊂ {ui|i ∈ I} for l = 4, 6, 7 and

{t2j|j ∈ Ẽ(l)} ∪ {t18} ⊂ {ui|i ∈ I} for l = 8.
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Since |I| = |E(l)|, the theorem is proved.

Dualizing the result of Theorem 5 and Theorem 7, we obtain the state-
ment of Theorem 1 except for P1

∗ t26,P1
∗ t34,P3

∗ t34,P1
∗ t46,P1

∗ t58 and P9
∗ t58. To

determine these operations, we use the adjoint action of H∗(G(l); Z/3) on
H∗(ΩG(l) ; Z/3) which is introduced in the next section.

(Remark)The computation of dualizing the result of Theorem 5 and Theo-
rem 7 is not difficult except for P1

∗ t18, because Pn
∗ t is primitive if t is primitive.

Moreover, it is easily shown

φ(P1
∗ t18) = P1

∗φ(t18) = φ(−t2t6
2)

and this shows P1
∗ t18 = −t2t6

2 modulo primitive elements. By Theorem 5 we
can see P1a14 = εa2

9 and this shows that P1
∗ t18 = εt14 − t2t6

2.

5 Adjoint action

Put y ∗ y′ = Ad∗(y ⊗ y′) and y ∗ t = ad∗(y ⊗ t) where y, y′ ∈ H∗(G; Z/3) and
t ∈ H∗(ΩG ; Z/3). Following are the dual result of [3]. Also see [9].

Therorem 11. For y, y′, y′′ ∈ H∗(G; Z/3) and t, t′ ∈ H∗(ΩG ; Z/3)

(i) 1 ∗ y = y, 1 ∗ t = t.

(ii) y ∗ 1 = 0,if |y| > 0, whether 1 ∈ H∗(G; Z/3) or 1 ∈ H∗(ΩG ; Z/3).

(iii) (yy′) ∗ t = y ∗ (y′ ∗ t).

(iv) y ∗ (tt′) =
∑

(−1)|y
′′||t|(y′ ∗ t)(y′′ ∗ t′) where ∆∗y =

∑
y′ ⊗ y′′.

(v) σ(y ∗ t) = y ∗ σ(t) where σ is the homology suspension.

(vi) Pn
∗ (y ∗ t) =

∑
i(P i

∗y) ∗ (Pn−i
∗ t).

Pn
∗ (y ∗ y′) =

∑
i(P i

∗y) ∗ (Pn−i
∗ y′).

(vii)

∆∗(y ∗ t) = (∆∗y) ∗ (∆∗t)

=
∑

(−1)|y
′′||t′|(y′ ∗ t′)⊗ (y′′ ∗ t′′)

where ∆∗y =
∑

y′ ⊗ y′′ and ∆∗t =
∑

t′ ⊗ t′′.
And ∆∗(y ∗ t) = (∆∗y) ∗ (∆∗t).
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(viii) If t is primitive then y ∗ t is primitive.

Also the result of [3] implies the following theorem. See [8].

Therorem 12. We set a submodule A of H∗(G; Z/3) as

A = Z/3[y8]/(y8
3) for G = F4, E6, E7 and

A = Z/3[y8, y20]/(y8
3, y20

3) for G = E8

where y2i is the dual of x2i with respect to the monomial basis. Then there
exists a retraction p : H∗(G; Z/3) → A and the following diagram commutes.

H∗(G; Z/3)⊗H∗(ΩG ; Z/3)

A⊗H∗(ΩG ; Z/3)

H∗(ΩG ; Z/3)-

?
¡

¡
¡

¡¡µ

ad∗

ad∗
p⊗ 1

(Remark)By Theorem 3 we can see P3
∗y20 = y8.

Since Ad∗ is agreed with the composition µ∗ ◦ (1⊗µ∗) ◦ (1⊗ 1⊗ ι∗) ◦ (1⊗
T ) ◦ (∆∗ ⊗ 1) where µ is the multiplication of G(l) and ι is the inverse map,
the next theorem follows. See [9].

Therorem 13. Let y, y′ ∈ H∗(G). If y is primitive,

y ∗ y′ = [y, y′]

where [y, y′] = yy′ − (−1)|y||y
′|y′y.

Now we give the proof of Theorem 2 and finish the proof of Theorem 1.
Let yi be the dual element of xi ∈ H∗(G(l)) as to the monomial basis. By
Theorem 3 and Theorem 13 we see that for j ∈ E(l) ∪ {3, 9} − {11, 29}

y8 ∗ y2j+1 =





y2j+9 for j = 1, 3, 4, 9, 13,
−y2j+9 for j = 19,
0 others
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and

y20 ∗ y2j+1 =





y2j+21 for j = 3, 7, 9,
−y2j+21 for j = 13 ,
0 others .

Since σt2j = y2j+1 for j ∈ E(l) ∪ {3, 9} − {11, 29}, Theorem 11 (v) implies

σ(y8 ∗ t2j) 6= 0 for j = 1, 3, 4, 9, 13, 19,
σ(y20 ∗ t2j) 6= 0 for j = 3, 7, 9, 13.

(2)

Then the equations

y8 ∗ t2 = t10, (3)

y8 ∗ t8 = t16, (4)

y8 ∗ t26 = t34, (5)

y8 ∗ t38 = −t46, (6)

y20 ∗ t14 = t34, (7)

y20 ∗ t26 = −t46 (8)

are shown by Theorem 11 (viii). Moreover (2) implies

y8 ∗ t6 ≡ t14, (9)

y8 ∗ t18 ≡ t26, (10)

y20 ∗ t6 ≡ t26, (11)

y20 ∗ t18 ≡ t38 (12)

modulo decomposable elements. Since

φ(y8 ∗ t6) = −(y8 ∗ t2)⊗ t2
2 − (y8 ∗ t2

2)⊗ t2 − t2 ⊗ (y8 ∗ t2
2)− t2

2 ⊗ (y8 ∗ t2)

= φ(−t10t2
2),

one can see that y8 ∗ t6 ≡ −t10t2
2 mod primitive elements. By this and (9),

we have
y8 ∗ t6 = t14 − t10t2

2. (13)

The equations

y8 ∗ t18 = t26 + t10t2
2t6

2 − t14t6
2, (14)

y20 ∗ t6 = t26 − (y20 ∗ t2)t2
2, (15)

y20 ∗ t18 = t38 − (y20 ∗ t6)t6
2 (16)
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are shown in the similar way.
By the equation (13), we can compute y8

3 ⊗ t6 as

y8
3 ∗ t6 = y8

2 ∗ (t14 − t10t2
2)

= y8
2 ∗ t14 + t10

3.

Since y8
3 = 0, y8

2 ∗ t14 = −t10
3 and this means y8 ∗ t14 is a non-zero primitive

indecomposable element. We redefine t22 as

t22 = y8 ∗ t14. (17)

Then we have
y8 ∗ t22 = −t10

3.

By Theorem 7 we can set P1
∗ t22 = κt6

3 where κ = ±1. Since P1
∗ t22 =

P1
∗ (y8 ∗ t14) = y8 ∗ t10, we have

y8 ∗ t10 = κt6
3.

By the similar manner, we can compute y8
3 ∗ t18 and obtain y8

2 ∗ t26 =
−t14

3. Therefore
y8 ∗ t34 = y8

2 ∗ t26 = −t14
3. (18)

Because t16 and t46 are primitive, we can set

y8 ∗ t16 = ρ2t8
3, (19)

y8 ∗ t46 = ρ3t18
3. (20)

Operate P3
∗ to (20) to obtain

y8 ∗ t34 = P3
∗ (y8 ∗ t46) = ρ3P3

∗ (t18
3) = ρ3εt14

3.

Thus by (18), we conclude that ρ3 = −ε. y8 ∗ t58 will be determined after the
determination of y20 ∗ t58.

Here we apply P1
∗ on (5), (6) and (14), P3

∗ on (5) to see

P1
∗ t26 = P1

∗ (y8 ∗ t18 − t10t6
2t2

2 + t14t6
2)

= εy8 ∗ t14 = εt22,

P1
∗ t34 = P1

∗ (y8 ∗ t26) = εy8 ∗ t22 = −εt10
3,

P1
∗ t46 = −P1

∗ (y8 ∗ t38) = −εy8 ∗ t34 = εt14
3,

P3
∗ t34 = P3

∗ (y8 ∗ t26) = y8 ∗ t14 = t22.
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Next we compute y20 ∗ t2i. First we apply P1
∗ to (15) to obtain

y20 ∗ t2 = P1
∗ (y20 ∗ t6) = P1

∗ (t26 − (y20 ∗ t2)t2
2) = εt22.

From this, (15) and (16) imply that

y20 ∗ t2 = εt22,

y20 ∗ t6 = t26 − εt22t2
2,

y20 ∗ t18 = t38 + εt22t6
2t2

2 − t26t6
2.

y20
3 ∗ t6 is computed as

0 = y20
3 ∗ t6 = y20

2 ∗ (y20 ∗ t6)

= y20
2 ∗ (t26 − εt22t2

2)

= y20
2 ∗ t26 + εt22

3.

Thus y20 ∗ t46 = −y20
2 ∗ t26 = εt22

3.
The similar computation of y20

3 ∗ t18 implies

y20
2 ∗ t38 = −t26

3.

Thus y20∗t38 is a non zero primitive indecomposable element and we redefine
t58 as y20 ∗ t38. Hence

y20 ∗ t38 = t58, (21)

y20 ∗ t58 = −t26
3. (22)

By applying P3
∗ to (22), we have

y8 ∗ t58 = P3
∗ (y20 ∗ t58) = −P3

∗ (t26
3) = −εt22

3.

We obtain also

y20 ∗ t22 = εP1
∗ (y20 ∗ t26) = −εP1

∗ t46 = −t14
3

by applying P1
∗ to (8).

Since t34 is primitive, we can set y20 ∗ t34 = ρ4t18
3 (ρ4 ∈ Z/3). Operating

P3
∗ to the both sides of this equation, ρ4εt14

3 is computed as follows:

ρ4εt14
3 = ρ4P3

∗ (t18
3)

= P3
∗ (y20 ∗ t34)

= y8 ∗ t34 + y20 ∗ t22

= t14
3.
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So y20 ∗ t34 = εt18
3 is shown. Now ad∗ is determined except for y8 ∗ t16.

Finally we operate P1
∗ to (21) and P9

∗ to (22) and see

P1
∗ t58 = P1

∗ (y20 ∗ t38) = y20 ∗ (P1
∗ t38) = εy20 ∗ t34 = t18

3,

y20 ∗ (P9
∗ t58) = P9

∗ (y20 ∗ t58) = −P9
∗ (t26

3) = −t14
3.

These equations imply that

P1
∗ t58 = t18

3,P9
∗ t58 = t22.

This completes the proof of Theorem 1.

Hiroaki HAMANAKA
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