The Mod 3 Homology of the Space of Loops on the Exceptional Lie Groups and the Adjoint Action

Hiroaki HAMANAKA* Department of Mathematics, Kyoto University and Shin-ichiro HARA Nagaoka University of Technology.

July 10, 1997

1 Introduction

Let p be a prime number and G be a compact, connected, simply connected and simple Lie group. Let ΩG be the loop space of G. Bott showed $H_*(\Omega G; \mathbb{Z}/p)$ is a finitely generated bicommutative Hopf algebra concentrated in even degrees, and determined it for classical groups G ([1]).

Here, let G be an exceptional Lie group, that is, $G = G_2, F_4, E_6, E_7, E_8$. In [2], K.Kozima and A.Kono determined $H_*(\Omega G; \mathbb{Z}/2)$ as a Hopf algebra over \mathcal{A}_2 , where \mathcal{A}_p is the mod p Steenrod Algebra and acts on it dually.

Let $\operatorname{Ad} : G \times G \to G$ and $\operatorname{ad} : G \times \Omega G \to \Omega G$ be the adjoint actions of G on G and ΩG respectively. In [3], the cohomology maps of these adjoint actions are studied and it is shown that $H^*(ad; \mathbb{Z}/p) = H^*(p_2; \mathbb{Z}/p)$ where p_2 is the second projection if and only if $H^*(G; \mathbb{Z})$ is *p*-torsion free. For p = 2, 3 and 5, some exceptional Lie groups have *p*-torsions on its homology.

^{*}Partially supported by JSPS Research Fellowships for Young Scientists.

Moreover in [8, 9] mod p homology map of ad is determined for $(G, p) = (G_2, 2), (F_4, 2), (E_6, 2), (E_7, 2)$ and $(E_8, 5)$. This result is applied to compute the \mathcal{A}_5 module structure of $H_*(\Omega E_8; \mathbb{Z}/5)$ and $H^*(E_8; \mathbb{Z}/5)$ in [9].

For a compact and connected Lie group G, the free loop group of G is denoted by LG(G), i.e. the space of free loops on G equipped with multiplication as

$$\phi \cdot \psi(t) = \phi(t) \cdot \psi(t),$$

and has ΩG as its normal subgroup. Then

$$LG(G)/\Omega G \cong G$$
,

and identifying elements of G with constant maps from S^1 to G, LG(G) is equal to the semi-direct product of G and ΩG . This means that the homology of LG(G) is determined by the homology of G and ΩG as module and the algebra structure of $H_*(LG(G); \mathbb{Z}/p)$ depends on $H_*(ad; \mathbb{Z}/p)$ where

$$ad: G \times \Omega G \to \Omega G$$

is the adjoint map. Since the next diagram commutes where λ, λ' and μ are the multiplication maps of ΩG , LG(G) and G respectively and ω is the composition

$$(1_{\Omega G} \times T \times 1_G) \circ (1_{\Omega G \times G} \times ad \times 1_G) \circ (1_{\Omega G} \times \Delta_G \times 1_{\Omega G \times G}),$$

$$\Omega G \times G \times \Omega G \times G \xrightarrow{\omega} \Omega G \times \Omega G \times G \times G \xrightarrow{\lambda \times \mu} \Omega G \times G$$

$$\downarrow \cong \times \cong$$

$$LG(G) \times LG(G) \xrightarrow{\lambda'} LG(G)$$

we can determine directly the algebra structure of $H_*(LG(G); Z/p)$ by the knowledge of the Hopf algebra structures of $H_*(G; Z/p)$, $H_*(\Omega G; Z/p)$ and induced homology map $H_*(ad; Z/p)$. See Theorem 6.12 of [8] for detail.

In this paper we determine the Hopf algebra structure over \mathcal{A}_3 of the homology group $H_*(\Omega G; \mathbb{Z}/3)$ for $G = F_4, E_6, E_7$ and E_8 by using adjoint action and determine the mod 3 homology map of ad for them. The result is shown in §2.

This paper is organized as follows. We refer to the results of [4, 5, 6] for the structure of $H^*(G)$ and compute $H^*(\Omega G)$ for the lower dimensions and their cohomology operations are partially determined. This is done in §3. In §4 we turn to their homology rings. We determine the algebra structure of $H_*(\Omega G; \mathbb{Z}/3)$ and we partly determine the Hopf algebra structure and cohomology operations on $H_*(\Omega G; \mathbb{Z}/3)$. Finally in §5 the homology map of the adjoint action and the rest of the Hopf algebra structure and cohomology operations are determined. The computations are completely algebraic.

2 Results

Let G(l) be the compact, connected, simply connected and simple exceptional Lie group of rank l where l = 4, 6, 7 or 8. The exponents of G(l) are the integers $n(1) < n(2) < \cdots < n(l)$ which are given by the following table :

l	n(1),	n	(2),			, n(l))				
4	1		5	7			11					
6	1	4	5	7	8		11					
7	1		5	7		9	11	13	17			
8	1			7			11	13	17	19	23	29

Put $E(l) = \{n(1), \dots, n(l)\}$ and $\overline{\phi}(t) = \Delta_*(t) - (t \otimes 1 + 1 \otimes t)$ where Δ is the diagonal map. \mathcal{P}^k_* is the dual of the Steenrod operation \mathcal{P}^k . Then the results are following :

Therorem 1. As a Hopf Algebra over \mathcal{A}_3 ,

$$H_*(\Omega G(l); \mathbb{Z}/3) \cong \begin{cases} \mathbb{Z}/3[t_{2j}|j \in E(l) \cup \{3\}]/(t_2^3), & \text{if } l = 4, 6, 7\\ \mathbb{Z}/3[t_{2j}|j \in E(8) \cup \{3,9\}]/(t_2^3, t_6^3), & \text{if } l = 8 \end{cases}$$

where $|t_{2j}| = 2j$.

$$\overline{\phi}(t_{2j}) = \begin{cases} 0, & \text{if } j \neq 3, 9, \\ -t_2^2 \otimes t_2 - t_2 \otimes t_2^2, & \text{if } j = 3, \\ t_2^2 t_6^2 \otimes t_2 + t_2 t_6^2 \otimes t_2^2 - t_6^2 \otimes t_6 - t_2^2 t_6 \otimes t_2 t_6 \\ -t_2 t_6 \otimes t_2^2 t_6 - t_6 \otimes t_6^2 + t_2^2 \otimes t_2 t_6^2 + t_2 \otimes t_2^2 t_6^2, & \text{if } j = 9, \end{cases}$$

$$\mathcal{P}_*^{3^r} t_{2j} = 0, \quad \text{if } r \geq 3, \\ \mathcal{P}_*^9 t_{2j} = \begin{cases} t_{22}, & \text{if } j = 29, \\ 0, & \text{otherwise.} \end{cases}$$

 $\mathcal{P}^1_*t_{2j}$ and $\mathcal{P}^3_*t_{2j}$ are given by the following table:

t_{2j}	t_2	t_6	t_8	t_{10}	t_{14}	t_{16}	t_{18}	t_{22}	t_{26}	t_{34}	t_{38}	t_{46}	t_{58}
$\mathcal{P}^1_* t_{2j}$	0	t_2	0	0	t_{10}	0	$\epsilon t_{14} - t_2 t_6^2$	$\kappa t_6{}^3$	ϵt_{22}	$-\epsilon t_{10}{}^3$	ϵt_{34}	$\epsilon t_{14}{}^3$	$t_{18}{}^3$
$\mathcal{P}^3_* t_{2j}$	0	0	0	0	0	0	t_6	0	t_{14}	t_{22}	$-t_{26}$	t_{34}	0

where ϵ and κ are 1 or -1.

(Remark) In Theorem 1, if t_{2j} does not exist in $H_*(\Omega G(l); \mathbb{Z}/3)$, we regard t_{2j} as 0 for such j.

Let $\operatorname{Ad} : G \times G \to G$ and $\operatorname{ad} : G \times \Omega G \to \Omega G$ be the adjoint actions of a Lie group G defined by $\operatorname{Ad}(g, h) = ghg^{-1}$ and $\operatorname{ad}(g, l)(t) = gl(t)g^{-1}$ where $g, h \in G, l \in \Omega G$ and $t \in [0, 1]$. These induce the homology maps

 $\begin{aligned} \operatorname{Ad}_{*} &: \quad H_{*}(G; \mathbb{Z}/3) \otimes H_{*}(G; \mathbb{Z}/3) \to H_{*}(G; \mathbb{Z}/3) \\ \operatorname{ad}_{*} &: \quad H_{*}(G; \mathbb{Z}/3) \otimes H_{*}(\Omega G; \mathbb{Z}/3) \to H_{*}(\Omega G; \mathbb{Z}/3). \end{aligned}$

Theorem 2. There are generators y_8 in $H_*(G(l); \mathbb{Z}/3)$ for l = 4, 6, 7 and y_8 and y_{20} in $H_*(E_8; \mathbb{Z}/3)$. We can choose these generators so that $ad_*(y_i \otimes t_{2j})$ (i = 8, 20) is given by the following table.

t_{2j}	$\mathit{ad}_*(y_8 \otimes t_{2j})$	$ad_*(y_{20}\otimes t_{2j})$	t_{2j}	$ad_*(y_8\otimes t_{2j})$	$\mathit{ad}_*(y_{20}\otimes t_{2j})$
t_2	t_{10}	ϵt_{22}	t_{22}	$-t_{10}{}^3$	$-t_{14}{}^3$
t_6	$t_{14} - t_{10} t_2{}^2$	$t_{26} - \epsilon t_{22} {t_2}^2$	t_{26}	t_{34}	$-t_{46}$
t_8	t_{16}		t_{34}	$-t_{14}{}^3$	$\epsilon t_{18}{}^3$
t_{10}	$\kappa t_6{}^3$	—	t_{38}	$-t_{46}$	t_{58}
t_{14}	t_{22}	t_{34}	t_{46}	$-\epsilon t_{18}{}^3$	$\epsilon t_{22}{}^3$
t_{16}	$\delta t_8{}^3$	—	t_{58}	$-\epsilon t_{22}{}^3$	$-t_{26}{}^3$
t_{18}	$t_{26} + t_{10}t_6^2 t_2^2 - t_{14}t_6^2$	$t_{38} + \epsilon t_{22} t_6^2 t_2^2 - t_{26} t_6^2$			

where $\delta, \epsilon \in \mathbb{Z}/3\mathbb{Z}$ and $\epsilon \neq 0$. For other generators $y_i \in H_*(G(l); \mathbb{Z}/3)$, $ad_*(y_i \otimes t_{2j}) = 0$ for all j.

3 The mod 3 cohomology groups

We recall the results of [4, 5, 6] for the structure of $H^*(G(l); \mathbb{Z}/3)$ as the Hopf algebra over \mathcal{A}_3 .

Therorem 3. There is an isomorphism :

$$H^*(G(l); \mathbb{Z}/3) \cong \begin{cases} \Lambda(x_{2j+1} | j \in E(l) \cup \{3\} - \{11\}) \otimes \mathbb{Z}/3[x_8]/(x_8^3), & \text{if } l = 4, 6, 7, \\ \Lambda(x_{2j+1} | j \in E(8) \cup \{3, 9\} - \{11, 29\}) \otimes \mathbb{Z}/3[x_8, x_{20}]/(x_8^3, x_{20}^3), \\ & \text{if } l = 8, \end{cases}$$

the coproduct is given by :

x_i	$\overline{\varphi}x_i$
x_{11}	$x_8 \otimes x_3$
x_{15}	$x_8 \otimes x_7$
x_{17}	$x_8\otimes x_9$
x_{27}	$x_8 \otimes x_{19} + x_{20} \otimes x_7$
x_{35}	$x_8 \otimes x_{27} - x_8^2 \otimes x_{19} + x_{20} \otimes x_{15} + x_8 x_{20} \otimes x_7$
x_{39}	$x_{20}\otimes x_{19}$
x_{47}	$-x_8 \otimes x_{39} - x_{20} \otimes x_{27} - x_{20} x_8 \otimes x_{19} + x_{20}^2 \otimes x_7$
others	0

and the cohomology operations are determined by the following table:

x_i	x_3	x_7	x_8	x_9	x_{11}	x_{15}	x_{17}	x_{19}	x_{20}	x_{27}	x_{35}	x ₃₉	x47
βx_i	0	x_8	0	0	0	$-x_8^2$	0	x_{20}	0	$x_8 x_{20}$	$-x_8^2 x_{20}$	$-x_{20}^{2}$	$x_8 x_{20}^2$
$\mathcal{P}^1 x_i$	x_7	0	0	0	x_{15}	ϵx_{19}	0	0	0	0	ϵx_{39}	0	0
$\mathcal{P}^3 x_i$	0	x_{19}	x_{20}	0	0	x_{27}	0	0	0	$-x_{39}$	x_{47}	0	0

where ϵ is 1 or -1.

If r > 1 then $\mathcal{P}^{3^r} x_i = 0$.

(Remark) We consider x_i in these tables as 0 when $x_i \notin H^*$.

Recall a Serre fibration:

 $\Omega G(l) \longrightarrow * \longrightarrow G(l).$ (A)

First, we compute $H^*(\Omega G(l); \mathbb{Z}/3)$ by the Serre spectral sequence associated with the fibration (A). This spectral sequence has a Hopf algebra structure. We can proceed to compute it using degree-reason and Kudo's transgression theorem ([7]) from the previous theorem. For $j \in E(l) - \{9, 11, 29\}$, there are universally transgressive elements $a_{2j} \in H^*(\Omega G(l); \mathbb{Z}/3)$, such that $\tau a_{2j} = x_{2j+1}$. Thus we can show that for j = 9, 11, 15, 21, 27 and 29, there are a_{2j} such that satisfy

$$d_{7}(1 \otimes a_{18}) = x_{7} \otimes a_{2}^{6}, \text{ for } l = 4, 6, 7, d_{11}(1 \otimes a_{30}) = x_{11} \otimes a_{10}^{2}, \text{ for } l = 4, 6, 7, d_{15}(1 \otimes a_{42}) = x_{15} \otimes a_{14}^{2}, \text{ for } l = 8, d_{19}(1 \otimes a_{22}) = x_{3}x_{8}^{2} \otimes a_{2}^{2}, \text{ for } l = 4, 6, 7, 8, d_{19}(1 \otimes a_{54}) = x_{19} \otimes a_{2}^{18}, \text{ for } l = 8, d_{47}(1 \otimes a_{58}) = x_{7}x_{20}^{2} \otimes a_{2}^{6}, \text{ for } l = 8.$$

 $a_{2j}'s$ are generators of the cohomology group in the low dimensions. The results are the following:

Proposition 4. For the dimensions less than 2n(l) + 2, the next isomorphism holds :

$$H^*(\Omega G(l); \mathbb{Z}/3) \cong \begin{cases} \mathbb{Z}/3[a_{2j}|j \in E(l) \cup \{9\}]/(a_2^9), & \text{if } l = 4, 6, \\ \mathbb{Z}/3[a_{2j}|j \in E(7) \cup \{15\}]/(a_{10}^3), & \text{if } l = 7, \\ \mathbb{Z}/3[a_{2j}|j \in E(8) \cup \{21, 27\}]/(a_2^{27}, a_{14}^3), & \text{if } l = 8. \end{cases}$$

Now we start to determine the cohomology operations and the coproducts on a_{2j} .

Therorem 5. For $j \in E(l) - \{9, 11, 29\}$ $a_{2j} \in H^*(\Omega G(l); \mathbb{Z}/3)$ is primitive and cohomology operations are determined by

a_{2j}	a_2	a_8	a_{10}	a_{14}	a_{16}	a_{26}	a_{34}	a_{38}	a_{46}
$\mathcal{P}^1 a_{2j}$	a_2^3	0	a_{14}	ϵa_2^9	0	0	ϵa_{38}	0	0
$\mathcal{P}^3 a_{2j}$	0	0	0	a_{26}	0	$-a_{38}$	a_{46}	0	0

If r > 1 then $\mathcal{P}^{3^r} a_{2j} = 0$.

Proof. For $j \in E(l) - \{9, 11, 29\}$, a_{2j} is transgressive, therefore $\mathcal{P}^i a_{2j} = \mathcal{P}^i \sigma x_{2j+1} = \sigma \mathcal{P}^i x_{2j+1}$. Thus this can be determined by Theorem 3.

For the investigation of a_{2j} which is not transgressive we start from the following theorem. In the next theorem, ψ means the coproduct of $H^*(\Omega G; \mathbb{Z}/3)$ and we set $\overline{\psi}(a) = \psi(a) - (a \otimes 1 + 1 \otimes a)$. **Therorem 6.** For j = 9, 15, 21, 27, $\overline{\psi}a_{2j}$ is given by the following formula:

$$\overline{\psi}a_{2j} = \begin{cases} a_2{}^3 \otimes a_2{}^6 + a_2{}^6 \otimes a_2{}^3, & \text{if } j = 9, \\ a_{10} \otimes a_{10}{}^2 + a_{10}{}^2 \otimes a_{10}, & \text{if } j = 15, \\ a_{14} \otimes a_{14}{}^2 + a_{14}{}^2 \otimes a_{14}, & \text{if } j = 21, \\ a_2{}^9 \otimes a_2{}^{18} + a_2{}^{18} \otimes a_2{}^9, & \text{if } j = 27. \end{cases}$$

Proof. To begin with, we investigate the element a_{18} . Let a'_2 be the generator of $H^2(\Omega F_4; \mathbb{Z})$. $H^*(\Omega F_4; \mathbb{Z})$ has no torsion and is a commutative Hopf algebra over \mathbb{Z} . Since $a_2^{9} = 0$, there is a'_{18} such that $a'_2^{9} = 3a'_{18}$ and $\rho a'_{18} \neq 0$, where ρ is modulo 3 reduction. Then we can choose a_{18} as $\rho a'_{18}$. The coproduct of a'_{18} is computed as follows:

$$\begin{split} \psi a'_{18} &= 1/3\psi a'_2{}^9 \\ &= 1/3(1\otimes a'_2 + a'_2\otimes 1)^9 \\ &\equiv a'_{18}\otimes 1 + {a'_2}{}^3\otimes {a'_2}{}^6 + {a'_2}{}^6\otimes {a'_2}{}^3 + 1\otimes a'_{18} \ (mod \ 3). \end{split}$$

Thus $\overline{\psi}a_{18} = a_2{}^3 \otimes a_2{}^6 + a_2{}^6 \otimes a_2{}^3$ is shown.

Consider the inclusion $\iota: F_4 \longrightarrow E_7$, we chose $a_{18} \in H^*(\Omega E_7; \mathbb{Z}/3)$ so as to satisfy $(\Omega \iota)^* a_{18} = a_{18}$. Because $(\Omega \iota)^*$ is injective for degrees less than 18, $\overline{\psi}a_{18} = a_2{}^3 \otimes a_2{}^6 + a_2{}^6 \otimes a_2{}^3$ is shown again for this a_{18} . And in the similar way we put $a_{30} = 1/3a_{10}{}^3, a_{42} = 1/3a_{14}{}^3$ and $a_{54} = 1/3a_2{}^{27}$ and obtain the coproduct formulas of the statement.

We remark that we can assume that a_{22} and a_{58} are primitive.

Theorem 7. In Proposition 4 we have that $\mathcal{P}^1 a_{18} = \pm a_{22}$.

Let G(l) be the 3-connected cover of G(l) and

$$\begin{array}{cccc} G(l) & \xrightarrow{P} & G(l) & \xrightarrow{\iota} & K(\mathbf{Z},3) & (\mathbf{C}) \\ \Omega \widetilde{G}(l) & \xrightarrow{\Omega p} & \Omega G(l) & \xrightarrow{\Omega i} & K(\mathbf{Z},2) & (\mathbf{D}) \end{array}$$

be Serre fibrations. To prove Theorem 7 we have to compute $H^*(\Omega \tilde{G}; \mathbb{Z}/3)$ and $H^*(\tilde{G}; \mathbb{Z}/3)$.

Let \tilde{a}_{2j} be $(\Omega p)^* a_{2j}$, for $j \neq 1$. Using the Serre spectral sequence associated with the fibration (D), one can easily show that there are generators $\tilde{a}_{17} \in H^{17}$ for l = 4, 6, and $\tilde{a}_{53} \in H^{53}$ for l = 8. We have the following proposition. Let denote $E(l) - \{1\}$ as $\tilde{E}(l)$.

Proposition 8. For the dimensions less than 2n(l) + 2, the next isomorphism holds :

$$H^*(\Omega \tilde{G}(l); \mathbb{Z}/3) \cong \begin{cases} \mathbb{Z}/3[\tilde{a}_{2j}|j \in \tilde{E}(l) \cup \{9\}] \otimes \Lambda(\tilde{a}_{17}), & \text{if } l = 4, 6, \\ \mathbb{Z}/3[\tilde{a}_{2j}|j \in \tilde{E}(7) \cup \{15\}]/(\tilde{a}_{10}^3), & \text{if } l = 7, \\ \mathbb{Z}/3[\tilde{a}_{2j}|j \in \tilde{E}(8) \cup \{21, 27\}]/(\tilde{a}_{14}^3) \otimes \Lambda(\tilde{a}_{53}), & \text{if } l = 8. \end{cases}$$

By computing the Serre spectral sequence associated with (B), it is easy to see \tilde{a}_{2j} , $(j \neq 15, 21)$ is universally transgressive. Let \tilde{x}_{i+1} be $\tau \tilde{a}_i$. Then we have the following:

Proposition 9. For the dimensions less than 2n(l) + 2, the next isomorphism holds :

$$H^*(\tilde{G}(l); \mathbb{Z}/3) \cong \begin{cases} \Lambda(\tilde{x}_{2j+1} | j \in E(l) \cup \{9\}) \otimes \mathbb{Z}/3[\tilde{x}_{18}], & \text{if } l = 4, 6, \\ \Lambda(\tilde{x}_{2j+1} | j \in \tilde{E}(7)), & \text{if } l = 7, \\ \Lambda(\tilde{x}_{2j+1} | j \in \tilde{E}(8) \cup \{27\}) \otimes \mathbb{Z}/3[\tilde{x}_{54}], & \text{if } l = 8. \end{cases}$$

Proof of Theorem 7. It is possible to show that $\mathcal{P}^1 a_{18}$ is not zero as follows. Let σ' denotes the cohomology suspension associated to the fibration (C) for l = 4. It is easy to see $\tilde{x}_{19} = \sigma' \beta \mathcal{P}^3 \mathcal{P}^1 u_3$ and $\tilde{x}_{23} = \sigma' (\beta \mathcal{P}^1 u_3)^3$, where u_3 is the generator of $H^3(\mathbf{K}(\mathbf{Z},3);\mathbf{Z}/3)$. So we get $\mathcal{P}^1 \tilde{x}_{19} = \sigma' \mathcal{P}^1 \beta \mathcal{P}^3 \mathcal{P}^1 u_3 = \sigma' \mathcal{P}^4 \beta \mathcal{P}^1 u_3 = \sigma' (\beta \mathcal{P}^1 u_3)^3 = \tilde{x}_{23}$, and from this, we have $(\Omega p)^* \mathcal{P}^1 a_{18} = \mathcal{P}^1(\Omega p)^* a_{18} = \mathcal{P}^1 \tilde{a}_{18} = \mathcal{P}^1 \sigma \tilde{x}_{19} = \sigma \mathcal{P}^1 \tilde{x}_{19} = \sigma \tilde{x}_{23} = \tilde{a}_{22}$, where σ is the cohomology suspension associated to (B). Thus $\mathcal{P}^1 a_{18} \neq 0$. We fix a_{22} as $\mathcal{P}^1 a_{18}$.

4 Homology groups

Therorem 10. The homology ring of $\Omega G(l)$ is

$$H_*(\Omega G(l); \mathbb{Z}/3) \cong \begin{cases} \mathbb{Z}/3[t_{2j}|j \in E(l) \cup \{3\}]/(t_2^3), & \text{if } l = 4, 6, 7\\ \mathbb{Z}/3[t_{2j}|j \in E(8) \cup \{3,9\}]/(t_2^3, t_6^3), & \text{if } l = 8. \end{cases}$$
(1)

where $|t_{2j}| = 2j$. The coproduct is given by

$$\overline{\phi}(t_{2j}) = \begin{cases} 0, & \text{if } j \neq 3, 9, 11, 29 \\ -t_2^2 \otimes t_2 - t_2 \otimes t_2^2, & \text{if } j = 3, \\ t_2^2 t_6^2 \otimes t_2 + t_2 t_6^2 \otimes t_2^2 - t_6^2 \otimes t_6 - t_2^2 t_6 \otimes t_2 t_6 \\ -t_2 t_6 \otimes t_2^2 t_6 - t_6 \otimes t_6^2 + t_2^2 \otimes t_2 t_6^2 + t_2 \otimes t_2^2 t_6^2, & \text{if } j = 9. \end{cases}$$

Proof. Let t_{2j} be the dual element of $a_{2j} \in H_*(\Omega G; \mathbb{Z}/3)$ as to the monomial basis for $j \in E(l) - \{9\}$ and t_6, t_{18} be the dual element of a_2^3, a_2^9 , respectively. It is easy to see $t_2^3 = t_6^3 = 0$ and to show the coproduct formula for t_6 and t_{18} . Thus we can say that statement (1) is true for * < 2n(l) + 2.

Now it is possible to show that there is no truncation in $H_*(\Omega G; \mathbb{Z}/3)$ other than the parts generated by t_2 and t_6 and that (1) holds for all dimensions. Since $H_*(\Omega G(l); \mathbb{Z}/3)$ is the even degree concentrated commutative Hopf algebra, we may suppose

$$H_*(\Omega G(l); \mathbb{Z}/3) = \mathbb{Z}/3[u_i|i \in I] \otimes \mathbb{Z}/3[v_j|j \in J]/(v_j^{3'j}|j \in J).$$

Consider an Eilenberg - Moore spectral sequence :

$$E_2 = \operatorname{Ext}_{H_*(\Omega G(l): \mathbb{Z}/3)}(\mathbb{Z}/3, \mathbb{Z}/3) \Longrightarrow E_{\infty} = \mathcal{G}r(H^*(G(l); \mathbb{Z}/3)).$$

Since $E_2 = \Lambda(su_i | i \in I) \otimes \Lambda(sv_j | j \in J) \otimes \mathbb{Z}/3[\theta v_j | j \in J]$, where deg $su_i = (1, |u_i|)$, deg $sv_j = (1, |v_j|)$, and deg $\theta v_j = (2, 3^{r_j} |v_j|)$, the essential differentials have the forms : $d_r su_i = (\theta v_j)^{3^{k_j}}$ ($k_j \ge 1$) or $d_r sv_j = (\theta v_{j'})^{3^{l_j}}$ ($l_j \ge 1$). Because $H^*(G(l); \mathbb{Z}/3)$ is a finite dimensional vector space, one can easily show

$$E_{\infty} = \Lambda(su_i|i \in I') \otimes \Lambda(sv_j|j \in J') \otimes \mathbb{Z}/3[\theta v_j|j \in J]/((\theta v_j)^{3^{m_j}}|j \in J), \quad (I' \subset I, J' \subset J)$$

and |I'|+|J'| = |I|. Here the total dimension of E_{∞} is $2^{|I'|+|J'|}3^{\sum_{j\in J} m_j}$, $(m_j \ge 1)$ and the total dimension of $H^*(G(l); \mathbb{Z}/3)$ is $2^{|E(l)|}3^{f(l)}$ where f(l) = 1 for l = 4, 6, 7 and f(l) = 2 for l = 8. Thus the indices J of the truncation part satisfy that $|J| \le f(l)$ and |I| = |E(l)|. This means that the truncation parts of $H_*(\Omega G; \mathbb{Z}/3)$ is generated by only t_2 and t_6 .

Therefore $H_*(\Omega G(l); \mathbb{Z}/3)$ has the form

$$Z/3[u_i|i \in I] \otimes Z/3[t_2]/(t_2^3) \quad \text{for } l = 4, 6, 7 \text{ and} Z/3[u_i|i \in I] \otimes Z/3[t_2, t_6]/(t_2^3, t_6^3) \quad \text{for } l = 8.$$

Also Theorem 5 means that for $j \in E(l) - \{9\}$ t_{2j} is primitive and indecomposable and t_6, t_{18} are indecomposable. Thus

$$\{t_{2j} | j \in E(l)\} \cup \{t_6\} \subset \{u_i | i \in I\} \quad \text{for } l = 4, 6, 7 \text{ and} \\ \{t_{2j} | j \in \tilde{E}(l)\} \cup \{t_{18}\} \subset \{u_i | i \in I\} \quad \text{for } l = 8.$$

Since |I| = |E(l)|, the theorem is proved.

Dualizing the result of Theorem 5 and Theorem 7, we obtain the statement of Theorem 1 except for $\mathcal{P}^1_*t_{26}$, $\mathcal{P}^1_*t_{34}$, $\mathcal{P}^3_*t_{34}$, $\mathcal{P}^1_*t_{46}$, $\mathcal{P}^1_*t_{58}$ and $\mathcal{P}^9_*t_{58}$. To determine these operations, we use the adjoint action of $H_*(G(l); \mathbb{Z}/3)$ on $H_*(\Omega G(l); \mathbb{Z}/3)$ which is introduced in the next section.

(Remark) The computation of dualizing the result of Theorem 5 and Theorem 7 is not difficult except for $\mathcal{P}^1_* t_{18}$, because $\mathcal{P}^n_* t$ is primitive if t is primitive. Moreover, it is easily shown

$$\overline{\phi}(\mathcal{P}^1_*t_{18}) = \mathcal{P}^1_*\overline{\phi}(t_{18}) = \overline{\phi}(-t_2t_6^{-2})$$

and this shows $\mathcal{P}_*^1 t_{18} = -t_2 t_6^2$ modulo primitive elements. By Theorem 5 we can see $\mathcal{P}^1 a_{14} = \epsilon a_2^9$ and this shows that $\mathcal{P}_*^1 t_{18} = \epsilon t_{14} - t_2 t_6^2$.

5 Adjoint action

Put $y * y' = \operatorname{Ad}_*(y \otimes y')$ and $y * t = \operatorname{ad}_*(y \otimes t)$ where $y, y' \in H_*(G; \mathbb{Z}/3)$ and $t \in H_*(\Omega G; \mathbb{Z}/3)$. Following are the dual result of [3]. Also see [9].

Theorem 11. For $y, y', y'' \in H_*(G; \mathbb{Z}/3)$ and $t, t' \in H_*(\Omega G; \mathbb{Z}/3)$

- (i) 1 * y = y, 1 * t = t.
- (ii) y * 1 = 0, if |y| > 0, whether $1 \in H_*(G; \mathbb{Z}/3)$ or $1 \in H_*(\Omega G; \mathbb{Z}/3)$.
- (iii) (yy') * t = y * (y' * t).

(iv)
$$y * (tt') = \sum (-1)^{|y''||t|} (y' * t) (y'' * t')$$
 where $\Delta_* y = \sum y' \otimes y''$.

- (v) $\sigma(y * t) = y * \sigma(t)$ where σ is the homology suspension.
- (vi) $\begin{aligned} \mathcal{P}^n_*(y*t) &= \sum_i (\mathcal{P}^i_* y) * (\mathcal{P}^{n-i}_* t). \\ \mathcal{P}^n_*(y*y') &= \sum_i (\mathcal{P}^i_* y) * (\mathcal{P}^{n-i}_* y'). \end{aligned}$
- (vii)

$$\Delta_*(y * t) = (\Delta_* y) * (\Delta_* t) = \sum (-1)^{|y''||t'|} (y' * t') \otimes (y'' * t'')$$

where $\Delta_* y = \sum y' \otimes y''$ and $\Delta_* t = \sum t' \otimes t''$. And $\overline{\Delta}_*(y * t) = (\Delta_* y) * (\overline{\Delta}_* t)$. (viii) If t is primitive then y * t is primitive.

Also the result of [3] implies the following theorem. See [8].

Theorem 12. We set a submodule A of $H_*(G; \mathbb{Z}/3)$ as

$$A = \frac{Z}{3[y_8]}/(y_8^3) \qquad for \ G = F_4, E_6, E_7 \ and A = \frac{Z}{3[y_8, y_{20}]}/(y_8^3, y_{20}^3) \quad for \ G = E_8$$

where y_{2i} is the dual of x_{2i} with respect to the monomial basis. Then there exists a retraction $p: H_*(G; \mathbb{Z}/3) \to A$ and the following diagram commutes.

$$H_*(G; \mathbb{Z}/3) \otimes H_*(\Omega G; \mathbb{Z}/3) \xrightarrow{ad_*} H_*(\Omega G; \mathbb{Z}/3)$$

$$\downarrow^{p \otimes 1} \qquad ad_*$$

$$A \otimes H_*(\Omega G; \mathbb{Z}/3)$$

(Remark)By Theorem 3 we can see $\mathcal{P}^3_* y_{20} = y_8$.

Since Ad_{*} is agreed with the composition $\mu_* \circ (1 \otimes \mu_*) \circ (1 \otimes 1 \otimes \iota_*) \circ (1 \otimes T) \circ (\Delta_* \otimes 1)$ where μ is the multiplication of G(l) and ι is the inverse map, the next theorem follows. See [9].

Therorem 13. Let $y, y' \in H_*(G)$. If y is primitive,

$$y \ast y' = [y, y']$$

where $[y, y'] = yy' - (-1)^{|y||y'|}y'y$.

Now we give the proof of Theorem 2 and finish the proof of Theorem 1. Let y_i be the dual element of $x_i \in H^*(G(l))$ as to the monomial basis. By Theorem 3 and Theorem 13 we see that for $j \in E(l) \cup \{3,9\} - \{11,29\}$

$$y_8 * y_{2j+1} = \begin{cases} y_{2j+9} & \text{for } j = 1, 3, 4, 9, 13, \\ -y_{2j+9} & \text{for } j = 19, \\ 0 & \text{others} \end{cases}$$

and

$$y_{20} * y_{2j+1} = \begin{cases} y_{2j+21} & \text{for } j = 3, 7, 9, \\ -y_{2j+21} & \text{for } j = 13, \\ 0 & \text{others }. \end{cases}$$

Since $\sigma t_{2j} = y_{2j+1}$ for $j \in E(l) \cup \{3, 9\} - \{11, 29\}$, Theorem 11 (v) implies

$$\begin{aligned} \sigma(y_8 * t_{2j}) &\neq 0 & \text{for } j = 1, 3, 4, 9, 13, 19, \\ \sigma(y_{20} * t_{2j}) &\neq 0 & \text{for } j = 3, 7, 9, 13. \end{aligned} \tag{2}$$

Then the equations

$$y_8 * t_2 = t_{10}, \tag{3}$$

$$y_8 * t_8 = t_{16}, \tag{4}$$

$$y_8 * t_{26} = t_{34}, \tag{5}$$

$$y_8 * t_{38} = -t_{46}, (6)$$

$$y_{20} * t_{14} = t_{34}, \tag{7}$$

$$y_{20} * t_{26} = -t_{46} \tag{8}$$

are shown by Theorem 11 (viii). Moreover (2) implies

$$y_8 * t_6 \equiv t_{14}, \tag{9}$$

$$y_8 * t_{18} \equiv t_{26},$$
 (10)

$$y_{20} * t_6 \equiv t_{26},$$
 (11)

$$y_{20} * t_{18} \equiv t_{38} \tag{12}$$

modulo decomposable elements. Since

$$\overline{\phi}(y_8 * t_6) = -(y_8 * t_2) \otimes t_2^2 - (y_8 * t_2^2) \otimes t_2 - t_2 \otimes (y_8 * t_2^2) - t_2^2 \otimes (y_8 * t_2)$$

= $\overline{\phi}(-t_{10}t_2^2),$

one can see that $y_8 * t_6 \equiv -t_{10}t_2^2 \mod \text{ primitive elements.}$ By this and (9), we have

$$y_8 * t_6 = t_{14} - t_{10} t_2^2. (13)$$

The equations

$$y_8 * t_{18} = t_{26} + t_{10} t_2^2 t_6^2 - t_{14} t_6^2, \tag{14}$$

$$y_{20} * t_6 = t_{26} - (y_{20} * t_2) t_2^2, \tag{15}$$

$$y_{20} * t_{18} = t_{38} - (y_{20} * t_6) t_6^2 \tag{16}$$

are shown in the similar way.

By the equation (13), we can compute $y_8^3 \otimes t_6$ as

$$y_8^3 * t_6 = y_8^2 * (t_{14} - t_{10}t_2^2)$$

= $y_8^2 * t_{14} + t_{10}^3$.

Since $y_8^3 = 0$, $y_8^2 * t_{14} = -t_{10}^3$ and this means $y_8 * t_{14}$ is a non-zero primitive indecomposable element. We redefine t_{22} as

$$t_{22} = y_8 * t_{14}. \tag{17}$$

Then we have

$$y_8 * t_{22} = -t_{10}{}^3$$

By Theorem 7 we can set $\mathcal{P}^1_* t_{22} = \kappa t_6^3$ where $\kappa = \pm 1$. Since $\mathcal{P}^1_* t_{22} = \mathcal{P}^1_* (y_8 * t_{14}) = y_8 * t_{10}$, we have

$$y_8 * t_{10} = \kappa t_6{}^3.$$

By the similar manner, we can compute $y_8^3 * t_{18}$ and obtain $y_8^2 * t_{26} = -t_{14}^3$. Therefore

$$y_8 * t_{34} = y_8^2 * t_{26} = -t_{14}^3.$$
⁽¹⁸⁾

Because t_{16} and t_{46} are primitive, we can set

$$y_8 * t_{16} = \rho_2 t_8^{\ 3}, \tag{19}$$

$$y_8 * t_{46} = \rho_3 t_{18}^{3}. \tag{20}$$

Operate \mathcal{P}^3_* to (20) to obtain

$$y_8 * t_{34} = \mathcal{P}^3_*(y_8 * t_{46}) = \rho_3 \mathcal{P}^3_*(t_{18}{}^3) = \rho_3 \epsilon t_{14}{}^3.$$

Thus by (18), we conclude that $\rho_3 = -\epsilon$. $y_8 * t_{58}$ will be determined after the determination of $y_{20} * t_{58}$.

Here we apply \mathcal{P}^1_* on (5), (6) and (14), \mathcal{P}^3_* on (5) to see

$$\begin{aligned} \mathcal{P}_{*}^{1}t_{26} &= \mathcal{P}_{*}^{1}(y_{8}*t_{18}-t_{10}t_{6}^{2}t_{2}^{2}+t_{14}t_{6}^{2}) \\ &= \epsilon y_{8}*t_{14}=\epsilon t_{22}, \\ \mathcal{P}_{*}^{1}t_{34} &= \mathcal{P}_{*}^{1}(y_{8}*t_{26})=\epsilon y_{8}*t_{22}=-\epsilon t_{10}^{3}, \\ \mathcal{P}_{*}^{1}t_{46} &= -\mathcal{P}_{*}^{1}(y_{8}*t_{38})=-\epsilon y_{8}*t_{34}=\epsilon t_{14}^{3}, \\ \mathcal{P}_{*}^{3}t_{34} &= \mathcal{P}_{*}^{3}(y_{8}*t_{26})=y_{8}*t_{14}=t_{22}. \end{aligned}$$

Next we compute $y_{20} * t_{2i}$. First we apply \mathcal{P}^1_* to (15) to obtain

$$y_{20} * t_2 = \mathcal{P}^1_*(y_{20} * t_6) = \mathcal{P}^1_*(t_{26} - (y_{20} * t_2)t_2^2) = \epsilon t_{22}.$$

From this, (15) and (16) imply that

$$y_{20} * t_2 = \epsilon t_{22},$$

$$y_{20} * t_6 = t_{26} - \epsilon t_{22} t_2^2,$$

$$y_{20} * t_{18} = t_{38} + \epsilon t_{22} t_6^2 t_2^2 - t_{26} t_6^2.$$

 $y_{20}^3 * t_6$ is computed as

$$0 = y_{20}^{3} * t_{6} = y_{20}^{2} * (y_{20} * t_{6})$$

= $y_{20}^{2} * (t_{26} - \epsilon t_{22} t_{2}^{2})$
= $y_{20}^{2} * t_{26} + \epsilon t_{22}^{3}$.

Thus $y_{20} * t_{46} = -y_{20}^2 * t_{26} = \epsilon t_{22}^3$. The similar computation of $y_{20}^3 * t_{18}$ implies

$$y_{20}^2 * t_{38} = -t_{26}^3$$

Thus $y_{20} * t_{38}$ is a non zero primitive indecomposable element and we redefine t_{58} as $y_{20} * t_{38}$. Hence

$$y_{20} * t_{38} = t_{58}, \tag{21}$$

$$y_{20} * t_{58} = -t_{26}^{3}. (22)$$

By applying \mathcal{P}^3_* to (22), we have

$$y_8 * t_{58} = \mathcal{P}^3_*(y_{20} * t_{58}) = -\mathcal{P}^3_*(t_{26}{}^3) = -\epsilon t_{22}{}^3.$$

We obtain also

$$y_{20} * t_{22} = \epsilon \mathcal{P}^1_*(y_{20} * t_{26}) = -\epsilon \mathcal{P}^1_* t_{46} = -t_{14}{}^3$$

by applying \mathcal{P}^1_* to (8).

Since t_{34} is primitive, we can set $y_{20} * t_{34} = \rho_4 t_{18}^3$ ($\rho_4 \in \mathbb{Z}/3$). Operating \mathcal{P}^3_* to the both sides of this equation, $\rho_4 \epsilon t_{14}^3$ is computed as follows:

$$\rho_{4} \epsilon t_{14}{}^{3} = \rho_{4} \mathcal{P}_{*}^{3}(t_{18}{}^{3}) \\
= \mathcal{P}_{*}^{3}(y_{20} * t_{34}) \\
= y_{8} * t_{34} + y_{20} * t_{22} \\
= t_{14}{}^{3}.$$

So $y_{20} * t_{34} = \epsilon t_{18}^3$ is shown. Now ad_* is determined except for $y_8 * t_{16}$. Finally we operate \mathcal{P}^1_* to (21) and \mathcal{P}^9_* to (22) and see

$$\mathcal{P}^{1}_{*}t_{58} = \mathcal{P}^{1}_{*}(y_{20} * t_{38}) = y_{20} * (\mathcal{P}^{1}_{*}t_{38}) = \epsilon y_{20} * t_{34} = t_{18}^{3}$$
$$y_{20} * (\mathcal{P}^{9}_{*}t_{58}) = \mathcal{P}^{9}_{*}(y_{20} * t_{58}) = -\mathcal{P}^{9}_{*}(t_{26}^{3}) = -t_{14}^{3}.$$

These equations imply that

$$\mathcal{P}^1_* t_{58} = t_{18}{}^3, \mathcal{P}^9_* t_{58} = t_{22}$$

This completes the proof of Theorem 1.

Hiroaki HAMANAKA Department of Mathematics, Kyoto University Shin-ichro HARA Nagaoka University of Technology

References

- R. Bott. The space of loops on Lie group. Michigan Math. J.5(1955), 35-61.
- [2] A. Kono and K. Kozima. The mod 2 homology of the space of loops on the exceptional Lie group. Proceedings of th Royal Society of Edinburgh, 112A(1989), 187-202.
- [3] —. The adjoint action of Lie group on the space of loops. Journal of The Mathematical Society of Japan, 45 No.3(1993),495-510.
- [4] S. Araki. On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups. Nagoya Math.J, 17(1960), 225-260.
- [5] A. Kono and M. Mimura. On the cohomology mod 3 of the classifying space of the compact, 1-connected exceptional Lie group E_6 . preprint series of Aarhus University, 1975.
- [6] H. Toda. Cohomology of the classifying space of exceptional Lie groups. Conference on manifolds, Tokyo, (1973), 265-271.

- [7] T. Kudo. A transgression theorem. Memoirs of the Faculty of Science, Kyusyu University, Ser.A, Vol.9, No.2, (1956),79-81.
- [8] H. Hamanaka. Homology ring mod 2 of free loop groups of exceptional Lie groups J. Math. Kyoto Univ, To appear.
- [9] H. Hamanaka, S. Hara and A. Kono. Adjoint action on the modulo 5 homology groups of E_8 and ΩE_8 To appear.