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1. INTRODUCTION

Assume G is a compact, connected, simply connected Lie group. The
space of free loops on G is called LG (G) the free loop group of G,
whose multiplication is defined as

@ - (t) = @(t) - ¥(t).
Let QG be the space of based loops on GG, whose base point is the unit
e. Then LG (G) has QG as its normal subgroup and

LG (G) /QG ~G.

Identifying elements of G' with constant maps from S* to G, LG (G) is
equal to the semidirect product of G and QG . Thus the mod p homol-
ogy of LG (G) is determined by the mod p homology of G and QG and
the algebra structure of H*(LG (G) ;Z/pZ) depends on H*(ad; Z/pZ)

where
ad : G x QG — QG

is the adjoint map.

The purpose of this paper is to determine H, (ad; Z/2Z) for the excep-
tional Lie goups G = G, Fy, Fg and E;. And at the same time, using
the Hopf algebra structures of H.(QEs ;Z/2Z) and H.(QE; ;Z/27Z),
we could determine the A5 module structure of H.(2G ;Z/2Z). More-
over some mistakes was detected in the result about Hopf structure
of Hy(QFEs ;Z/2Z) of [5] and we offer the modified result. The main
result is showed in Theorem 4.1, 4.4 and 5.2.

This paper is organized as follows. In §2 we refer to the result of
the algebra structure of H*(G;Z/2Z) and H,.(QG ;Z/2Z). And in §3
we introduce the adjoint action and observe its property and in §4,
85 the induced homomorphism from adjoint action of Go, Fy, E and
E7 is determined. Finally in §6 we give the method to compute the

Pontrjagin ring of LG (G) and show the case of Gs.
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2. H(G;Z/2Z) aND H.(QG ;Z/27)

We refer to the result of [1] and [2] about H*(G;Z/2Z) for G =
Go, Fy, Eg, Er.

Theorem 2.1.
) = Z/2Z[z3)/(23) ® [\ ()
) = Z/2Z[z3)/(x3) ® [\ (w5, w15, 733),
H*(Es;Z/2Z) = Z/2Z[xs)/(x3) © (25,79, 215, 217, T23),
) = Z/2Z[xs, x5, 20/ (73, 78, 75) ® /\(a:15,:c17,:c23, To7)
where x; 15 a generator of degree i. Moreover there are homomorphisms
Gy — Fy — FEg — Fx

whose induced homomorphism map x; into x; in the cohomology of any
smaller group.

Theorem 2.2. The x; in Theorem 2.1 can be chosen so as to satisfy

2
Ts = Sq x3,

Tg = Sq4x5
and x3, r5 and x9 are primitive.

The algebra structure of H,(Q2G ;Z/2Z) can be determined as an
application of the Eilenberg-Moore spectral sequence. See [7].

Theorem 2.3.
N\ (b2) ® Z/2Z by, by,
= A\ (b2) ® Z/2Z[by, by, bus, bas)],
\(b2) ® Z/2Z[bs, bs, bro, bus, bis, baa),
(by, by, bs) ® Z/2Z[brg, buy, big, bis, baz, bag, ba]

- A

where b; s a generator of degree 1.
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3. ADJOINT ACTION

Let Ad : G xG — G and ad : G x QG — QG be the adjoint
action of a Lie group G defined by Ad(gh) = ghg™' and ad(g,1)(t) =
gl(t)g~! where g,h € G, 1 € QG and ¢ € [0,1]. These induce the
homomorphisms

Ad, : H.(G;Z/2Z) @ H.(G;Z/2Z) — H.(G;Z/27Z)
and
ad, : Ho(G;Z/2Z) @ H.(QG ;Z/27) — H,.(QG ;Z/27).

Put yxy = Ad.(y®y') and y*xb = ad.(y®0b) where y,y’ € H.(G;Z/27Z)

and b € H.(Q2G ;Z/2Z). Following are the dual statement of the result

in [6].

Theorem 3.1. Fory,y',y" € H.(G;Z/2Z) and b,V € H.(QG ;Z/27Z)
(i) 1xy=y, 1xb=0b.

(i) y*1 = 0,if |y| > 0, whether 1 € H.(G;Z/2Z) or1 € H.(QG ;Z/2Z).
(i) (yy') # b=y * (¢ *b).
(iv) g (bb') = 3 (4 * D) (y" + V') where Avy =3y @y
v) o(y *xb) =y o(b) where o is the homology suspension.
(vi) S} (y +b) = >,(Sdiy) * (Sai~'d).
S (y +y) = 32;(Scby) * (Sl ™y).

(vii)
Ay b) = (D) (AD)
_ Z(y/ *b/) ® (y// *b”)
where Ay = >y @y" and Ab=> b ®b". Also
A (y*b) = (Asy) * (ALD).
(viil) If b is primitive then y * b is primitive.
Also the result of [6] implies
Theorem 3.2. We define a submodule A of H.(G;Z/2Z) as

A = Alys) for G = Gy, Fy, g
A = AWs:vr0,118) for G = Exr

where yo; is the dual of x? with respect to the monomial basis. Then
there ezist a retraction p : Hy.(G;Z/27) — A and the following diagram

commutes.
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H.(G;Z/2Z) @ H.(QG ;Z/2Z) —%e  H,(QG ;Z/2Z)

p ad,

A®H,(0G ;Z/2Z)

Proof. By Proposition 2.10 of [6] we have the folloing commutative
diagram

ad”
ad

H*(G; Z/2Z) ® H*(QG ; Z/27Z) H*(QG :Z/2Z)

ad’
(T4 U1) @ H(QG ;Z/27Z)

where T, is the set of all transgressive elements with respect to the
principal fibration

G — G/T — BT.
Clearly
TZUl = /\(133) G = Gy, Fy, B,
TH Ul = /\(x%,x?,xé)

Using monomial basis of H*(G;Z/2Z) and T, we can dualize the
above result and regard (T )* U1 as the submodule of H,(G;Z/2Z)
and we obtain the statement.

Remark
1. By Theorem 3.1 (iv) and Theorem 3.2 we see that for b € H.(QG ;Z/27Z)
and i = 3.,5,9
yoi ¥ 0 = (y2i % b)b + (yi % b)* + b(yai * b)
= 0.

2. By theorem 3.1 and 3.2, when G = Gq, F), Eg (resp. G = Ex
), if ye * b; (resp. ys * bj, yio * b; and yi5 * b;) is determined
for b; € H.(G;Z/2Z), then the map H,(ad;Z/2Z) is determined
completely.

4. ADJOINT ACTION ON QFjg

The next theorem is the main result for Eg of this paper.
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Theorem 4.1. In Theorem 2.3 we can take b; in H.(QEs ;Z/27) so
as to satisfy that

(1) A.b;) = 0 i#4, 8, 16,
(2)  Adbs) = by @by,
(3)  Au(bs) = by ®boby + by @ by + boby @ bo,
A.(b1g) = by @ bybybg + by @ bybg + byby @ bybg + bg @ bg

+ babg @ baby 4 babg @ by 4 babsbg @ by
(4) + by ® babi + bobl @ by + by ® b} + b} @ by

Sqib4 = by, qubs = byby, Sq:fbs = by, Sq;lbm = bybg,
S(ﬁbw = bg, S(ﬁbm = b?p Sq;lbm =0, S(ﬁbm =0,
Sqibm = by, Scﬁbm =0, SqibQQ = by4.

(iid)
Yo * by = b3, Y6 * by = bio + bab3, Y * bs = big + biobs + b3bs,

Ye * b16 = b22 + b14b8 + blobgb4 + bgbibz -+ blobi + bibg,
Yo * big = b?p Yo * b1y = b%o; Yo * oo = 5%4-

Remark Theorem 4.1 states the whole informations of the Hopf
algebra structure, the Steenrod algebra module structure and ad, for
H,(QEs ;Z/2Z) except for Sq2big and Sq’byy. These are postponed
until Theorem 5.2.

Proof of i). By Theorem 5.1 in [5] we see (1) and by Lemma 3.1 in
[5] we can set

(5) (b3)* = bi,
(6) v3)* = 0,
(7) b3 = b

Here (5) implies (2). We set

az = b3, as = (b)*, a1s = (b3)",

1k . X
aip = big, a4 = bjy

where ( )* means the dual with respect to the monomial basis of
H.(QG ;Z/2Z). Then

Hy(QG ;Z/2Z) = (b, bg),
HE(OG :Z/2Z) = (as, al).
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So we see

(8) as = (b3)" + pbg,

(9) ay = b

where p € Z/2Z. We can put p = 0 by re-defining bg by bg + pb3. This

implies (3). Also in Hyg(G ;Z/2Z) and H'S(QG ;Z/27Z) we know
Hig(QG ;Z/2Z) = (bis, b3, bsbi, by, buba, biabsbs),

H16(QG;Z/2Z) = (ag, a%, asaé‘, ai6, @a14Q2, al4a§>,

and we can see
ag = (03)" - ()" = (b3 @ b3)" 0 A,
This shows that a2 = (b3)* + q1b} where q; € Z/2Z. In the similar way
we have
(10) ag = (b3)" + qibig, asai = (bsbi)* + qobls, ars = (b3)* + qsbis,
araay = (biaba)* + qubis, a10a3 = (biobabs)* + gsbie
where ¢; € Z/2Z for 1 < i < 5. Again we re-define by by by + q103 +
q2bsb3 + q3b} + qub1aby + qsbigbsbs so that g; becomes 0. Therefore by
dualizing (7) and (10), the equations
asas = ai(aiag)
= b - (b5 - (b))
= b (@ R) oA
= (ba® ((b3) + (bsba))* 0 A,
and
asag = ag(agag)
= (ba® ((bei) + (bgbaba))* 0 A,
deduce that

A*(b16) - b2 ® b264b8 + b4 ® b4b8 + b2b4 ® bgbg + bg ® bs
+ babg @ baby + bybg @ by + bababg @ by
+ by @ byb3 4 bob3 @ by + by @ b5 4 b3 @ by.

Proof of i) and iii). By equations (5), (6), (7) and the above argu-
ments we have easily

SClib4 = by, Sq:%bs = by, S(ﬁblﬁ = bg.
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Also,
A, Sq?bs = Sq?A.bg
by @ by + by @ by,
Z*S(ﬁbm = S(ﬁz*bw
= by ® babg + babg @ by
+by ® bg + bg @ by
+by @ bab + bab] ® by
+baoby @ baby

and this implies that
Sq2bs = boba, Sqibig = babs + b},

since there exists no primitive element in Hg(Q2E¢ ; Z/2Z) and H15(Q2E¢ ;Z/27Z).
Also we see

Z*qubw = Sqiz*blﬁ
= A, (bybybg + bob})
and this implies
(11) Sq2big = babybs + byb’ + (primitive element).
Next we consider yg * b;. We start from the next lemma.
Lemma 4.2.
Yo * by = b3.

Proof. We recall the exceptional Lie group G5. By Theorem 2.1 and
Theorem 2.2, we have

H.(G2;Z/2Z) = /\(?J3,y57y6)

where y3, ys are the dual of x3, x5 and ys is the dual of 22 with
respect to the monomial basis of H*(G9;Z/2Z). And by the inclusion
Gy — Eg, y; in Hy(Go; Z/2Z7) and b; in H, (G5 ;Z/27Z) corresponds to
y; in Hy(Eg; Z/2Z) and b; in H,(QEg ; Z/2Z). Therefore it is sufficient
to prove that yg * by = b7 in the case of Gb.

There is an inclusion SU(3)->G, and

H*(SU(3); Z/2Z) = (w3, x5)
where |z;| = i and 25 = Sq®x3. Also k*x3 = 23 and k*z5 = 5. We use

the same notation for the elements which correspond by the inclusion.
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First we observe the commutator map I’y : SU(3) A SU(3) — SU(3)
and I' : Gy A Gy — (9. Here remember that there are the fibrations

SU(3)%SU(3)8BK(Z,3),

GG B K (Z,3)

where x and x represent the generator of H*(SU(3); Z) and H?(Gy; Z),
and SU(3) and Gy are homotopy fibres of zy and  respectively.

Since 790y ~ % and z o ~ x, there are lifts [y : SUB)ASU(3) —
57](3) and T : Gy A Gy — CTQ such that 490 g ~ Ty and ol ~ T.
Also the following is known that

H(SU(3): 2/22) = Z/2Z[xs) @ [\ (a5, 0)

H*(Ga; Z/2Z) = Z)2Z[ws] ® (29, 211)

where |z;| =i and |z| = 5 and by inclusion @(3)ﬁ>(72 K'rg = xg and
RK'wg = x9. (See [4].)

Next we introduce a subspace X of SU(3) A SU(3). We know that
SU(3) ~ S?Ues Ueg and S? U e5 ~ Y.CP? where ¢; is a cell of degree
1. We put

X =(S%Ues) A S® ~XCP? A S3.
We can see easily that
H*(X, Z/2Z) = <€6, €8>

where |¢;| = i and eg = Sqeg. N N
We denote the 2-localization of SU(3) as SU(3)(2) and the inclusion
SU(3) — SU(3)(2) as lo. Then we have the following diagram:

SU(3) % SU(3))

X =YCP2A 83 — SUB)ANSU(3) —~ SU(3)




Let f be the map f: X — §f](3)(2) defined by f =150 f0|X.
We can see easily m5(SU(3)2)) = Z/2Z. Let o : S°9) — SU(3)2) be

the 2-localization of its generator. Then o, : Hy(S%2); Z) — H,(SU(3)2); Z)
is isomorphic for x* < 6 and epic for * = 7. Thus by Whitehead’s theo-
rem

(12) a1 6(S%(2)) 76 (SU(3) (2))

is isomorphic.
Here we refer to R.Bott’s result that

F0|53/\53 S WG(SU(?))) = Z/6Z

is a generator. (See [3]. ) This implies f|gs, g3 € 7T6(§[/J(3)(2)) =7/2Z
is the generator. Thus (12) implies that there exists a map

g:5%— 5%
and g represents the generator of m4(5%()) = Z/2Z and the following

diagram commutes upto homotopy.

X“f'@ (3@

oy I

S6——— S%0)

Lemma 4.3.
f*(l’s) = €s.

Proof. We assume f*(xg) = 0. Let Cy and C, be the mapping cone
of f and g respectively. Consider the commutative diagram below.

x L osUB) 5 oo L oSX e
Te T« T T
6L g, oo D ownge
Then we can see
H*(Cy;Z/2Z) = (Z5, Ts, To, €7, &) for * < 10, |z;| =i, |&] =i
where k*(Z;) = x; and j*(X¢;) = €41. Also we can show easily
H*(Cy; Z2/2Z) = (¢5,¢1), |ei| =i
and k" (¢5) = c5 and j'*(Xcg) = ¢ where ¢; is the generator of H(S%; Z /27Z).
Then we have the equations

L*(%‘) = Ce, Oé*(ﬁs) = Cs,
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(7)) =5, V(67) = 7.

Recall that [g] is the generator of mg(S° () = 7T6(§f](3)(2)) =7/2Z.
This implies that the 2-localization of g, g« : 56(2) — 55(2) is ho-
motopic to X3y where 7 is the Hopf map v : S — S?. Thus
09(2) ~ 2307(2) ~ ESCPQ(Q) and we have

Sq*es = ¢; in H*(Cy; Z/27Z) .

Therefore SqZs = &, since, if it were not, & = Sqié5 = Squ'*% =
*(Sq2%5) = 0. We easily see Sq2é; = & also.
On the other hand, by the Adem relation, we obtain
Sq?Sq*zs = Sq*Sq'zs = 0.
These contradict each other. Thus f*(zg) = €s.
Q.E.D.(Lemma 4.3)

Since Lemma 4.3 implies fo*(xg) # 0, the only one possibility is

fo*(ZEg) =13 T5 + T5 R T3.
Then by the naturality of the commutator, we have

f*(l’g) =23Q T+ 5 Q T3
and
[(zy) = T(Sq'ws)
= Sql(.CEg R T5 + T5 X .733)
= x3®x§+x§®x3.

By dualizing this, we have

(13) Ly (ys @ y3) = yo

where yo € H,(Ga;Z/2Z) is the dual element of zg € H*(Gy; Z/2Z)
with respect to the monomial basis.
Now we consider the case of 0G5 . We have the fibration

0Gy, — QGy — K(Z,2)

and the commutator map I'' : Gy A QGy — QG5 lifts to the map
~/ —~
I' : Go ANQGy — QG5 . Here we can set

~/ ~
(g, 1)(t) = T'(g, (1))
for g € G, 1 € QG and t € [0, 1]. Thus we have the following commu-

tative diagram in which the coefficient ring Z/2Z is abbreviated.
10



H.11(Gb)

7B

H,1(G2) —~ T, H.11(G2)
o H. Q

Qz N
GQ ® H QGQ 4’ QGQ
Also, we know that
H.(QGs ;2/2Z) = |\(V;) ® Z/2Z[bg, bo]

and Qi ,(0) = b3, Qi .(b1g) = b1p and o(by) = yo. This can be seen by
the Serre spectral sequence of the fibration S' — QG — QG .
Thus (13) implies that

¥o = L.(ys ® 0 (ba)) = 0T, (45 © b2).
Then f;(yﬁ ® by) # 0, that is, f;(yﬁ ® by) = bg. Therefore
Tl(ye @ba) = Qi.o f;<y6 ® by)
= Qi by = b3
Since the following diagram commutes,
I (ys @b2) = (ys * 1) - by + (y6 * bz) - 1 = yg * by.
Gy x QG L0,

1><Al T)\
Gy x QG x 0G.2 421 0G, x QG

Thus we finally obtain
Y * b2 == bi
Q.E.D.(Lemma 4.2)

We remark that ys * b; can be determined upto primitive elements,
if all yg * b and yg x 0" are determined where A,b; = > b’ ®b”. Since

= Z(yﬁ x0) 0" +V @ (yg xb").
For example, since A,yg * by = (Yg * ba) @ by + by @ (y6 * by) = A, (bab2),
Yo * by = p(6,4)b10 + bab}
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where pe.4) € Z/2Z. Then we have
(14)
Yo * by = p(s,a)b10 + ba2b3,
Yo * bg = p(6,8)b1a + ba(ys * ba) + bab3,
Yo * bie = p(6,16)D22 + bs (6 * bs) + (babs + b3) (y6 * by) + bab3bg + boby

where pi) € Z/2Z.
On the other hand, we have

S (ys * ba) = yo * (Satba) = Y * ba,
(15) Sd;(ys * bs) = yo * (Saibs) = Y * bu,
SQE(?JG * big) = Yo * (SQEbw) = Y * bs.
Since Steenrod operators map primitive elements into primitive el-

ements and decomposable elements into decomposable elements, by
(14), (15) and Lemma 4.2 we obtain that

,0(6,4)5613510 = bi, P(6,8)SCﬁb14 = P(6,4)b10, P(6,16)SQE522 = p(6,8)b14
and this implies that
P(6,4) = P(6,8) = P(6,16) = 1,
(16) SqZbig = b3, Sqibis = bio, Sqibay = byy.
Therefore by (14) we have that

Y6 * by = bio + bab3, yg * bg = bis + bigbs + biba,
Yp * b16 = b22 + 61468 + b10b8b4 + bgbibQ + blobi + bibg

Since by4 and byy are primitive, we have the equations

Yo * bra = 0(6,14)5%07
17
(17) Y * byp = /3(6,22)5%4

where peq) € Z/2Z. On the other hand by (16) we have
Sai (Y6 * bua) = Yo * S bia = Yo * bio,

(18) ng(% * bag) = Yo * SqSbas = ye * bua.
Since
0 = (y5)*ba
= Yo * (Yo * ba)
=Yg * by + ys * (D2b?),
we obtain

Yp * blO = bi
Therefore (17) and (18) implies that

p(6,14) = P(e,22) = 1.
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Since there is no primitive elements in Hg(2Es ; Z/2Z) and His(QEg ; Z/27Z)
and since bg and by are primitive, we have

Sctabio = 0, Sczbay = 0.
Thus we get the all formulas in Theorem 4.1.

Q.E.D.

By Theorem 4.1 we can deduce the following theorem about G5 and
Fy.

Theorem 4.4. 1. In H,(QGy ;Z/27)

Ys * bQ = bi,
Yo * by = bio+ be?p
Yp * blO = bi

2. In H,(QF, ; Z/27)

Yo x by = bj,

Yo *x by = big+ babj,
Yo * big = bi
Yo * b1y = b%m
Yo * by = bil.

Proof. By the naturality of the adjoint action we have the following
commutative diagram.

G x06, 2 aa,
l !
nxar, 2 aor
! l
ad

E6 X QE(; — QE6

Here H.(QGy ;Z/2Z) — H.(QF, ;Z/2Z) and H,(QF, ;Z/2Z) — H.(QFEg ;Z/27)
are monic. Then Theorem 4.1 implies the statements.

5. ADJOINT ACTION ON QF;

For the Hopf algebra structure of H,(QE; ;Z/2Z) we refer to the
following result of [5].
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Theorem 5.1 (A.Kono & K.Kozima). In Theorem 2.3 we can choose
b; in Ho(QE; ;Z/27) so as to satisfy that

(22)

)

«(b1) =
(bs)
)

0 fori#4, 8, 16,

by ® b,

by @ baby + by @ by + baby @ by,

by @ bababg + by @ babg + baby @ babg + by @ by
+bobg ® baby + bybg @ by + babybg & bs.

Proof. For (19) see Theorem 5.1 in [5]. Then (20), (21) and (22)
follows from Theorem 4.1.

Now we observe the induced homomorphism on homology by the
adjoint action of F; on QF; .

Theorem 5.2. In Theorem 5.1 b; satisfies the following tables

bi | ye * b Y10 * b; Y18 * b;
bg 0 0 b%O
by || bio b1y bas + bob7,
bs || bia + babyg big + b4by14 bag + babos + bababi,
bio || 0 b%, bl
b14 b%O 0 b%ﬁ
big || baz + bsbis + bsbsbio | bog + bsbis + babsbia | by + bsbag + babsboo + babsbshi,
big || O b3, bis
bas || 0%, bt bl
b26 b%6 b%s b%2
b34 bilo b%2 b%6
b; S(ﬁbi Sq;lbz’ SCﬁbi SQiGbi
by || ba — | — |—
bs || baby by — | —
bio || b7 0 — —
bis || O big — —
b1 || D14 + babsbg | bsbs | g —
b22 b%O 0 b14 —
by || O bao big —
ba || b3 0 0 big




Proof. By considering the inclusion Fg — FE~, the result of Theorem
4.1 turns into

Yo * ba = 0, yg * bs = bio, Y6 * by = b1o, Ye * bg = bia + babig, ys * big = 0,
Yo * big = bag + bgbia + babsbio, Yo * bia = b3y, yg * bay = b3,

Sq2bs = ba, Sqtbs = babs, Sqibs = by, Sqibig = babs,

qubw = bg, qublo =0, S(ﬁblo =0, qubm =0,

Sqybia = bio, Sdibas =0, SqSban = bya.

If b; is primitive, yg*b;, y10*b;, Y13 * b; and Sq{bi are primitive . Thus
y; * b; = 0 for (4,7) = (6,18), (10,2), (10,14)
and
Sql * b; = 0 for (i,5) = (18,2), (26,2), (34,4)

since there is no primitive elements of degrees which these elements
have in H;(QE; ;Z/27Z).

As stated in the proof of Theorem 4.1, yg * b; can be determined
modulo primitive elements, if all yg *x b’ and yg * b” are known where
ALb; =S 0 ®V". This is true for the case of y19 * b; and y;5 * b;. Thus
we can put as follows:

(23) Y0 *bs = pro,a)bis,
(24) Y0 *bs = progs)bis + ba(yio * ba),
(25) Y10 * big = p(i0,16)b26 + (decomposable elements)

where po,4) € Z/2Z. By applying Sq? for (23), obtain

p(10,4)qufb14 = quf(ylo * 54) = Y * bg = Y10
and this implies p(194) = 1. Also by applying Sq® for (24) and Sq? for
(25), we obtain the following equations in the similarway:
p(lO,S)ngbIS = Sq¥(y10 * bs + babrs)
= Yo * by
(26) = Yo,

p(lo,lﬁ)Sq;lb% = Sqi(ylo * big)
= Ys * big + Y10 * (babg)
(27) = by mod decomposable elements.

Then (26) and (27) implies paog) = 1 and po,16) = 1 and Sabbis =

bio. Also, since Sqlbyg is primitive and no decomposable element in
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Hoo(QE; ;Z/27) is primitive, (27) tells that Sqtbyg = byy. Therefore
we obtain

(28) Y0k by = b,
(29) Yio ¥ bg = big + babia,
(30) Y10 * big = bog + bgbig + babgbyy.

By applying Sq? and Sq? to (29) and Sq® to (30), we have
Y10 * (babs) = Sqbis + bobi,

Yo * bg + Y10 * by = S(ﬁbls + bybyo,

Yo * (babs) + Y10 * bs = Sq3bag + bsbuo.
So we obtain that
Sq2bis = 0, Sqibis = 0, SqSbas = bis.
Also, 910 * byg can be computed as
Yo% bio = Y10 * (Yo * ba)

= Yex (ylo * b4)
= y6 >k 614 = b%O

Next we observe yig * big, Y10 * beg and yig * bgg. Since yig * big is
primitive, we can put

(31) Y10 * big = P(10,18)b%4a
(32) Y10 * baz = p(10,22)bT,
(33) Y10 * bag = p(10,26)b7s

where pao,) € Z/2Z. By applying Sq® for (31), Sq? for (32) and Sql®
for (33), we obtain that

P(lo,ls)SQEbﬂ = SaSy10 * bis = Y10 * bio = b3,
0(10,22)8(111[)%6 = quﬁ?ho * bog = yp * bag = 5%4,

p(lo,QG)SQiﬁbfg = SQiﬁylo * bog = Y * b1y = b%o-
Therefore we have p(10,18) = p(10,22) = p(10,26) = 1 and
(34) qu«l(biﬁ) = b%4~
Remember that by (11) in the proof of Theorem 4.1 we have

qublﬁ = kb14 + b2b4bg + bgbi in H*(QE(; ; Z/QZ)
16



where k € Z/2Z and then
qublﬁ = k’bl4 + b2b4b8 in H*<QE7 7Z/QZ)
Then one can easily show k£ = 1 from (34). Hence

S2big = b1y + babsbs + bob?  in H,(QFEs ; Z/27Z),
SqZbis = bia + babsbs in H.(QFE; ;Z/27Z).

Moreover we have that in H,(QEs ;Z/27Z)
qu(% *big) = Yo * (b1a + bobybg + bei)
= big + bababia + bobsbig + b3bs + b3,
while
qu(yG *big) = SQZ(bm + bgb14 + babgbio + bibw + bzbi)
= Sq?bag + babybiy + babghig + bibg + bj.

Therefore it follows that

Sq2byy = b3, in H,(QFEs ;Z/2Z) and H,(QE; ;Z/27).

Next we consider yig * by, 415 * by and yi5 * bg. We can put

(35) Yis x by = P(18,2)b%0,

(36) Y1s % by = psab + (decomposable elements),
(37) s ¥ bs = pass)bes + (decomposable elements),
(38) Y18 ¥ b1 = p(is;16)bsa + (decomposable elements).

By applying Sq® to (37), we have
pass)SAibas = Sq}(yis * bs)

= Yo *bs
b1s mod decomposable elements.

Thus p1g8) = 1 and also we see

Yigk by = S(ﬁ@m * bs)
qufb%

bss mod decomposable elements.

This means p(154) = 1. Moreover we know that

Ay (y1s * by) = by @ (Y15 * b2) + (Y15 * b2) ® bo,
that is, y1s * by = bag + ba(y1s * by). Therefore

Yyig * by = qu<y18 * b4)
= Sqi(bm + ,0(18,2)b2b%0)

_ 2
- blO
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and p(152) = 1. Also operating Sqi® to (38), we see
Y0 xbs = Sq.°(y1s * byg)
= p(18716)Sqi6b34 + (decomposable elements).

Then, by (29), we deduce ppsi6 = 1 and Sqlhsy = bys.
Now we can compute yig * bo, 415 * by, Y18 * bg and yi5 * byg, using

Y18 * by = p(is,aybaz + ba(y1s * b2)

and by the similar manner. Hence we have

(39) yis * by = b,
(40) Yyig* by = by + 525307
(41) Yig ¥ by = bog + byboy + bobyb?,,
(42) Yig * big = bga + bgbag + babgbas + b2b468b%0-
Next we observe ;g * b1g, Y18 * 14, Y18 * b1g and y15 * bag. We can put
(43) Y18 * byg = p(18,10)b%4>
(44) Yig* by = )0(18,14)b%67
(45) Yig* big = ,0(18,18)13%87
(46) Yis *x by = p(18,26)b327

by primitivity. We can easily show pagi0) = pasia) = pasis) =
pas26) = 1 by applying Sq® to (43), Sq} to (44), Sqlf to (45) and
Sql® to (46). Also by applying Sq? to (46), we have

Y1s * boo = Sq; (y1s * bag) = Sib3y = biy.

Now the rest we have to do is to determine yg * b34, Y10 * 34, Y18 * b3y
and to determine Sqib34 and Sqibg4. Here (42) implies that

Yo *bss = Yo * (Y15 * big + bsbog + babsbas + babsbsbiy)
= y1s * (Y6 * bis) + Y6 * (bsbag + babsbaz + bababsbi,)
= b
By the similar manner we can compute 319 * bgy4 and y;g * b3y as

2
Y10 * bgg = 522>

(47) Y1s * bay = Dig.
Also by applying Sq® to (47), we have
y1s * (SAZbaa) + 1o * bas = S (big).-

This means y15 * (SqSbss) = 0, while SqSbsy = bys or 0. Therefore
Sqtbss = 0.
18



Also by applying Sq? to (42), we have
qub34 = 18 * (SCIiblb‘) + qu(bsbzﬁ + babgbos + b2b4b86%0)
= b3
Thus we obtain the all entries of the tables in Theorem 5.2.
Q.E.D.

6. HOMOLOGY RING OF LG (G)

As stated in §1, LG (G) is isomorphic to the semi-direct product of
G and QG . Thus the following diagram commutes S\See 6]. )
OG xGxOG x G—2+~0G x QG x G x GA2HOG < G
o x @ / o
LG (G) x LG (G) A LG (G)
where @ : QG xG — LG (G) is amap defined by ®(I, g)(t) = I(t)-g
and \,\" and g are the multiplication maps of QG ;| LG (G) and G
respectively and w is the composition

(log XT x1g) o (laog xad x 1g) o (log X A.g X laog xa)-

And also, ® is homeomorphism.
Therefore we have the following theorem.

Theorem 6.1. Let G be a compact, connected, simply connected Lie
group and p a prime. Then

H.(LG (G) ;Z/pZ) = H.(QG ;Z/pZ) @ H.(G;Z/pZ) as Z/pZ module
and the multiplication is defined by

(b@y)- (' @y) = (0 (yo* ) @ (o - ¥)
where b0 € H,(QG ;Z/pZ), y,y € Ho(G;Z/pZ) and Ay = ya) ®
Y2)-

Thus by Theorem 4.1, 4.4 and 5.2 we can directly compute the al-
gebra structure of H.(LG (G) ;Z/2Z) for G = Ga, Fy, Fs, E;. But it is
complex to write them out exactly. Hence we show the case of G5 only.

Theorem 6.2. H.(LG (G2) ;Z/2Z) is generated by ys, ys, ys and b, by, byg.
And their fundamental relations are

Y3 =0, y2 =0, y3 =0, b5 =0,
i, y;] =0, [bi,0;] =0 [ys3,b;] =0, [ys,b;] =0,

[ys, ba] = b3, (Y6, ba] = b1o, [Ys, b1o] = bj.
Hiroaki HAMANAKA
DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY
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