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1. Introduction

Assume G is a compact, connected, simply connected Lie group. The
space of free loops on G is called LG (G) the free loop group of G,
whose multiplication is defined as

ϕ · ψ(t) = ϕ(t) · ψ(t).

Let ΩG be the space of based loops on G, whose base point is the unit
e. Then LG (G) has ΩG as its normal subgroup and

LG (G) /ΩG ∼= G.

Identifying elements of G with constant maps from S1 to G, LG (G) is
equal to the semidirect product of G and ΩG . Thus the mod p homol-
ogy of LG (G) is determined by the mod p homology of G and ΩG and
the algebra structure of H∗(LG (G) ;Z/pZ) depends on H∗(ad;Z/pZ)
where

ad : G× ΩG → ΩG

is the adjoint map.
The purpose of this paper is to determine H∗(ad;Z/2Z) for the excep-

tional Lie goups G = G2, F4, E6 and E7. And at the same time, using
the Hopf algebra structures of H∗(ΩE6 ;Z/2Z) and H∗(ΩE7 ;Z/2Z),
we could determine the A∗

2 module structure of H∗(ΩG ;Z/2Z). More-
over some mistakes was detected in the result about Hopf structure
of H∗(ΩE6 ;Z/2Z) of [5] and we offer the modified result. The main
result is showed in Theorem 4.1, 4.4 and 5.2.

This paper is organized as follows. In §2 we refer to the result of
the algebra structure of H∗(G;Z/2Z) and H∗(ΩG ;Z/2Z). And in §3
we introduce the adjoint action and observe its property and in §4,
§5 the induced homomorphism from adjoint action of G2, F4, E6 and
E7 is determined. Finally in §6 we give the method to compute the
Pontrjagin ring of LG (G) and show the case of G2.
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2. H∗(G;Z/2Z) and H∗(ΩG ;Z/2Z)

We refer to the result of [1] and [2] about H∗(G;Z/2Z) for G =
G2, F4, E6, E7.

Theorem 2.1.

H∗(G2;Z/2Z) = Z/2Z[x3]/(x
4
3)⊗

∧
(x5),

H∗(F4;Z/2Z) = Z/2Z[x3]/(x
4
3)⊗

∧
(x5, x15, x23),

H∗(E6;Z/2Z) = Z/2Z[x3]/(x
4
3)⊗

∧
(x5, x9, x15, x17, x23),

H∗(E7;Z/2Z) = Z/2Z[x3, x5, x9]/(x
4
3, x

4
5, x

4
9)⊗

∧
(x15, x17, x23, x27)

where xi is a generator of degree i. Moreover there are homomorphisms

G2 → F4 → E6 → E7

whose induced homomorphism map xi into xi in the cohomology of any
smaller group.

Theorem 2.2. The xi in Theorem 2.1 can be chosen so as to satisfy

x5 = Sq2x3,

x9 = Sq4x5

and x3, x5 and x9 are primitive.

The algebra structure of H∗(ΩG ;Z/2Z) can be determined as an
application of the Eilenberg-Moore spectral sequence. See [7].

Theorem 2.3.

H∗(ΩG2 ;Z/2Z) =
∧

(b2)⊗ Z/2Z[b4, b10],

H∗(ΩF4 ;Z/2Z) =
∧

(b2)⊗ Z/2Z[b4, b10, b14, b22],

H∗(ΩE6 ;Z/2Z) =
∧

(b2)⊗ Z/2Z[b4, b8, b10, b14, b16, b22],

H∗(ΩE7 ;Z/2Z) =
∧

(b2, b4, b8)⊗ Z/2Z[b10, b14, b16, b18, b22, b26, b34]

where bi is a generator of degree i.
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3. Adjoint action

Let Ad : G × G → G and ad : G × ΩG → ΩG be the adjoint
action of a Lie group G defined by Ad(gh) = ghg−1 and ad(g, l)(t) =
gl(t)g−1 where g, h ∈ G, l ∈ ΩG and t ∈ [0, 1]. These induce the
homomorphisms

Ad∗ : H∗(G;Z/2Z)⊗ H∗(G;Z/2Z) → H∗(G;Z/2Z)

and

ad∗ : H∗(G;Z/2Z)⊗ H∗(ΩG ;Z/2Z) → H∗(ΩG ;Z/2Z).

Put y∗y′ = Ad∗(y⊗y′) and y∗b = ad∗(y⊗b) where y, y′ ∈ H∗(G;Z/2Z)
and b ∈ H∗(ΩG ;Z/2Z). Following are the dual statement of the result
in [6].

Theorem 3.1. For y, y′, y′′ ∈ H∗(G;Z/2Z) and b, b′ ∈ H∗(ΩG ;Z/2Z)

(i) 1 ∗ y = y, 1 ∗ b = b.
(ii) y∗1 = 0,if |y| > 0, whether 1 ∈ H∗(G;Z/2Z) or 1 ∈ H∗(ΩG ;Z/2Z).
(iii) (yy′) ∗ b = y ∗ (y′ ∗ b).
(iv) y ∗ (bb′) =

∑
(y′ ∗ b)(y′′ ∗ b′) where ∆∗y =

∑
y′ ⊗ y′′.

(v) σ(y ∗ b) = y ∗ σ(b) where σ is the homology suspension.
(vi) Sqn

∗ (y ∗ b) =
∑

i(Sqi
∗y) ∗ (Sqn−i

∗ b).
Sqn

∗ (y ∗ y′) =
∑

i(Sqi
∗y) ∗ (Sqn−i

∗ y′).
(vii)

∆∗(y ∗ b) = (∆∗y) ∗ (∆∗b)

=
∑

(y′ ∗ b′)⊗ (y′′ ∗ b′′)

where ∆∗y =
∑

y′ ⊗ y′′ and ∆∗b =
∑

b′ ⊗ b′′. Also

∆∗(y ∗ b) = (∆∗y) ∗ (∆∗b).

(viii) If b is primitive then y ∗ b is primitive.

Also the result of [6] implies

Theorem 3.2. We define a submodule A of H∗(G;Z/2Z) as

A =
∧

(y6) for G = G2, F4, E6

A =
∧

(y6, y10, y18) for G = E7

where y2i is the dual of x2
i with respect to the monomial basis. Then

there exist a retraction p : H∗(G;Z/2Z) → A and the following diagram
commutes.
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H∗(G;Z/2Z)⊗ H∗(ΩG ;Z/2Z)

A⊗ H∗(ΩG ;Z/2Z)

H∗(ΩG ;Z/2Z)-

?
¡

¡
¡

¡¡µ

ad∗

ad∗
p

Proof. By Proposition 2.10 of [6] we have the folloing commutative
diagram

H∗(G;Z/2Z)⊗ H∗(ΩG ;Z/2Z)

(T2∗
G ∪ 1)⊗ H∗(ΩG ;Z/2Z)

H∗(ΩG ;Z/2Z)¾

6 ¡
¡

¡
¡¡ª

ad∗

ad∗

where T∗
G is the set of all transgressive elements with respect to the

principal fibration

G → G/T → BT.

Clearly

T2∗
G ∪ 1 =

∧
(x2

3) G = G2, F4, E6,

T2∗
E7
∪ 1 =

∧
(x2

3, x
2
5, x

2
9).

Using monomial basis of H∗(G;Z/2Z) and T2∗
G , we can dualize the

above result and regard (T2∗
G )∗ ∪ 1 as the submodule of H∗(G;Z/2Z)

and we obtain the statement.
Remark

1. By Theorem 3.1 (iv) and Theorem 3.2 we see that for b ∈ H∗(ΩG ;Z/2Z)
and i = 3, 5, 9

y2i ∗ b2 = (y2i ∗ b)b + (yi ∗ b)2 + b(y2i ∗ b)

= 0.

2. By theorem 3.1 and 3.2, when G = G2, F4, E6 (resp. G = E7

), if y6 ∗ bj (resp. y6 ∗ bj, y10 ∗ bj and y18 ∗ bj) is determined
for bj ∈ H∗(G;Z/2Z), then the map H∗(ad;Z/2Z) is determined
completely.

4. Adjoint action on ΩE6

The next theorem is the main result for E6 of this paper.
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Theorem 4.1. In Theorem 2.3 we can take bi in H∗(ΩE6 ;Z/2Z) so
as to satisfy that

(i)

∆∗(bi) = 0 i 6= 4, 8, 16,(1)

∆∗(b4) = b2 ⊗ b2,(2)

∆∗(b8) = b2 ⊗ b2b4 + b4 ⊗ b4 + b2b4 ⊗ b2,(3)

∆∗(b16) = b2 ⊗ b2b4b8 + b4 ⊗ b4b8 + b2b4 ⊗ b2b8 + b8 ⊗ b8

+ b2b8 ⊗ b2b4 + b4b8 ⊗ b4 + b2b4b8 ⊗ b2

+ b2 ⊗ b2b
3
4 + b2b

3
4 ⊗ b2 + b4 ⊗ b3

4 + b3
4 ⊗ b4.(4)

(ii)

Sq2
∗b4 = b2, Sq2

∗b8 = b2b4, Sq4
∗b8 = b4, Sq4

∗b16 = b4b8,
Sq8

∗b16 = b8, Sq2
∗b10 = b2

4, Sq4
∗b10 = 0, Sq2

∗b14 = 0,
Sq4

∗b14 = b10, Sq4
∗b22 = 0, Sq8

∗b22 = b14.

(iii)

y6 ∗ b2 = b2
4, y6 ∗ b4 = b10 + b2b

2
4, y6 ∗ b8 = b14 + b10b4 + b3

4b2,
y6 ∗ b16 = b22 + b14b8 + b10b8b4 + b8b

3
4b2 + b10b

3
4 + b5

4b2,
y6 ∗ b10 = b4

4, y6 ∗ b14 = b2
10, y6 ∗ b22 = b2

14.

Remark Theorem 4.1 states the whole informations of the Hopf
algebra structure, the Steenrod algebra module structure and ad∗ for
H∗(ΩE6 ;Z/2Z) except for Sq2

∗b16 and Sq2
∗b22. These are postponed

until Theorem 5.2.
Proof of i). By Theorem 5.1 in [5] we see (1) and by Lemma 3.1 in

[5] we can set

(b∗2)
2 = b∗4,(5)

(b∗2)
4 = b∗8,(6)

(b∗2)
8 = b∗16.(7)

Here (5) implies (2). We set

a2 = b∗2, a8 = (b2
4)
∗, a16 = (b4

4)
∗,

a10 = b∗10, a14 = b∗14

where ( )∗ means the dual with respect to the monomial basis of
H∗(ΩG ;Z/2Z). Then

H8(ΩG ;Z/2Z) = 〈b2
4, b8〉,

H8(ΩG ;Z/2Z) = 〈a8, a4
2〉.
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So we see

a8 = (b2
4)
∗ + pb∗8,(8)

a4
2 = b∗8(9)

where p ∈ Z/2Z. We can put p = 0 by re-defining b8 by b8 + pb2
4. This

implies (3). Also in H16(ΩG ;Z/2Z) and H16(ΩG ;Z/2Z) we know

H16(ΩG ;Z/2Z) = 〈b16, b2
8, b8b

2
4, b4

4, b14b2, b14b4b2〉,
H16(ΩG ;Z/2Z) = 〈a8

2, a2
8, a8a

4
2, a16, a14a2, a14a

3
2〉,

and we can see

a2
8 = (b2

4)
∗ · (b2

4)
∗ = (b2

4 ⊗ b2
4)
∗ ◦∆∗.

This shows that a2
8 = (b2

8)
∗+q1b

∗
16 where q1 ∈ Z/2Z. In the similar way

we have

a2
8 = (b2

8)
∗ + q1b

∗
16, a8a

2
4 = (b8b

2
4)
∗ + q2b

∗
16, a16 = (b4

4)
∗ + q3b

∗
16,

a14a2 = (b14b2)
∗ + q4b

∗
16, a10a

3
2 = (b10b4b2)

∗ + q5b
∗
16

(10)

where qi ∈ Z/2Z for 1 ≤ i ≤ 5. Again we re-define b16 by b16 + q1b
2
8 +

q2b8b
2
4 + q3b

4
4 + q4b14b2 + q5b10b4b2 so that qi becomes 0. Therefore by

dualizing (7) and (10), the equations

a4
2a8 = a2

2(a
2
2a8)

= b∗4 · (b∗4 · (b2
4)
∗)

= b∗4 · ((b4 ⊗ b2
4)
∗ ◦∆∗)

= (b4 ⊗ ((b3
4) + (b8b4))

∗ ◦∆∗

and

a4
2a8 = a2(a

3
2a8)

= (b2 ⊗ ((b2b
3
4) + (b8b4b2))

∗ ◦∆∗

deduce that

∆∗(b16) = b2 ⊗ b2b4b8 + b4 ⊗ b4b8 + b2b4 ⊗ b2b8 + b8 ⊗ b8

+ b2b8 ⊗ b2b4 + b4b8 ⊗ b4 + b2b4b8 ⊗ b2

+ b2 ⊗ b2b
3
4 + b2b

3
4 ⊗ b2 + b4 ⊗ b3

4 + b3
4 ⊗ b4.

Proof of ii) and iii). By equations (5), (6), (7) and the above argu-
ments we have easily

Sq2
∗b4 = b2, Sq4

∗b8 = b4, Sq8
∗b16 = b8.

6



Also,

∆∗Sq2
∗b8 = Sq2

∗∆∗b8

= b2 ⊗ b4 + b4 ⊗ b2,

∆∗Sq4
∗b16 = Sq4

∗∆∗b16

= b2 ⊗ b2b8 + b2b8 ⊗ b2

+b4 ⊗ b8 + b8 ⊗ b4

+b2 ⊗ b2b
2
4 + b2b

2
4 ⊗ b2

+b2b4 ⊗ b2b4

and this implies that

Sq2
∗b8 = b2b4, Sq4

∗b16 = b4b8 + b3
4,

since there exists no primitive element in H6(ΩE6 ;Z/2Z) and H12(ΩE6 ;Z/2Z).
Also we see

∆∗Sq2
∗b16 = Sq2

∗∆∗b16

= ∆∗(b2b4b8 + b2b
3
4)

and this implies

Sq2
∗b16 = b2b4b8 + b2b

3
4 + (primitive element).(11)

Next we consider y6 ∗ bi. We start from the next lemma.

Lemma 4.2.

y6 ∗ b2 = b2
4.

Proof. We recall the exceptional Lie group G2. By Theorem 2.1 and
Theorem 2.2, we have

H∗(G2;Z/2Z) =
∧

(y3, y5, y6)

where y3, y5 are the dual of x3, x5 and y6 is the dual of x2
3 with

respect to the monomial basis of H∗(G2;Z/2Z). And by the inclusion
G2 → E6, yi in H∗(G2;Z/2Z) and bi in H∗(ΩG2 ;Z/2Z) corresponds to
yi in H∗(E6;Z/2Z) and bi in H∗(ΩE6 ;Z/2Z). Therefore it is sufficient
to prove that y6 ∗ b2 = b2

4 in the case of G2.

There is an inclusion SU(3)
κ→G2 and

H∗(SU(3);Z/2Z) =
∧

(x3, x5)

where |xi| = i and x5 = Sq2x3. Also κ∗x3 = x3 and κ∗x5 = x5. We use
the same notation for the elements which correspond by the inclusion.
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First we observe the commutator map Γ0 : SU(3) ∧ SU(3) → SU(3)
and Γ : G2 ∧G2 → G2. Here remember that there are the fibrations

S̃U(3)
i0→SU(3)

x0→K(Z, 3),

G̃2
i→G2

x→K(Z, 3)

where x0 and x represent the generator of H3(SU(3);Z) and H3(G2;Z),

and S̃U(3) and G̃2 are homotopy fibres of x0 and x respectively.

Since x0 ◦Γ0 ' ∗ and x◦Γ ' ∗, there are lifts Γ̃0 : SU(3)∧SU(3) →
S̃U(3) and Γ̃ : G2 ∧ G2 → G̃2 such that i0 ◦ Γ̃0 ' Γ0 and i ◦ Γ̃ ' Γ.
Also the following is known that

H∗(S̃U(3);Z/2Z) = Z/2Z[x8]⊗
∧

(x′5, x9)

H∗(G̃2;Z/2Z) = Z/2Z[x8]⊗
∧

(x9, x11)

where |xi| = i and |x′5| = 5 and by inclusion S̃U(3)
eκ→G̃2 κ̃∗x8 = x8 and

κ̃∗x9 = x9. (See [4].)
Next we introduce a subspace X of SU(3) ∧ SU(3). We know that

SU(3) ' S3 ∪ e5 ∪ e8 and S3 ∪ e5 ' ΣCP2 where ei is a cell of degree
i. We put

X = (S3 ∪ e5) ∧ S3 ' ΣCP2 ∧ S3.

We can see easily that

H∗(X;Z/2Z) = 〈ε6, ε8〉
where |εi| = i and ε8 = Sq2ε6.

We denote the 2-localization of S̃U(3) as S̃U(3)(2) and the inclusion

S̃U(3) → S̃U(3)(2) as l2. Then we have the following diagram:

S̃U(3)
l2−→ S̃U(3)(2)

SU(3)

K(Z, 3)

?

?

-

i0

Γ0

Γ̃0

SU(3) ∧ SU(3)X = ΣCP2 ∧ S3 ↪→
¡

¡
¡

¡µ

8



Let f be the map f : X → S̃U(3)(2) defined by f = l2 ◦ Γ̃0|X .

We can see easily π5(S̃U(3)(2)) = Z/2Z. Let α : S5
(2) → S̃U(3)(2) be

the 2-localization of its generator. Then α∗ : H∗(S5
(2);Z) → H∗(S̃U(3)(2);Z)

is isomorphic for ∗ ≤ 6 and epic for ∗ = 7. Thus by Whitehead’s theo-
rem

α∗ : π6(S
5
(2))

'→π6(S̃U(3)(2))(12)

is isomorphic.
Here we refer to R.Bott’s result that

Γ0|S3∧S3 ∈ π6(SU(3)) ∼= Z/6Z

is a generator. ( See [3]. ) This implies f |S3∧S3 ∈ π6(S̃U(3)(2)) ∼= Z/2Z
is the generator. Thus (12) implies that there exists a map

g : S6 → S5
(2)

and g represents the generator of π6(S
5
(2)) ∼= Z/2Z and the following

diagram commutes upto homotopy.

S6 S5
(2)

X S̃U(3)(2)

-

-

6 6

g

f

ι α

Lemma 4.3.

f ∗(x8) = ε8.

Proof. We assume f ∗(x8) = 0. Let Cf and Cg be the mapping cone
of f and g respectively. Consider the commutative diagram below.

X
f−→ S̃U(3)(2)

k−→ Cf
j−→ ΣX → · · ·

↑ ι ↑ α ↑ ι′ ↑ Σι

S6 g−→ S5
(2)

k′−→ Cg
j′−→ ΣS6 → · · ·

Then we can see

H∗(Cf ;Z/2Z) = 〈x̄5, x̄8, x̄9, ε̄7, ε̄9〉 for ∗ < 10, |x̄i| = i, |ε̄i| = i

where k∗(x̄i) = xi and j∗(Σεi) = ε̄i+1. Also we can show easily

H∗(Cg;Z/2Z) = 〈c̄5, c̄7〉, |c̄i| = i

and k′∗(c̄5) = c5 and j′∗(Σc6) = c̄7 where ci is the generator of Hi(Si;Z/2Z).
Then we have the equations

ι∗(ε6) = c6, α∗(x5) = c5,
9



ι′∗(x̄5) = c̄5, ι′∗(ε̄7) = c7.

Recall that [g] is the generator of π6(S
5
(2)) ∼= π6(S̃U(3)(2)) ∼= Z/2Z.

This implies that the 2-localization of g, g(2) : S6
(2) → S5

(2) is ho-
motopic to Σ3γ(2) where γ is the Hopf map γ : S3 → S2. Thus

Cg(2) ' Σ3Cγ(2) ' Σ3CP2
(2) and we have

Sq2c̄5 = c̄7 in H∗(Cg;Z/2Z) .

Therefore Sq2x̄5 = ε̄7, since, if it were not, c̄7 = Sq2
∗c̄5 = Sq2

∗ι
′∗x̄5 =

ι′∗(Sq2
∗x̄5) = 0. We easily see Sq2

∗ε̄7 = ε̄9 also.
On the other hand, by the Adem relation, we obtain

Sq2Sq2x̄5 = Sq3Sq1x̄5 = 0.

These contradict each other. Thus f ∗(x8) = ε8.

Q.E.D.(Lemma 4.3)

Since Lemma 4.3 implies Γ̃0

∗
(x8) 6= 0, the only one possibility is

Γ̃0

∗
(x8) = x3 ⊗ x5 + x5 ⊗ x3.

Then by the naturality of the commutator, we have

Γ̃
∗
(x8) = x3 ⊗ x5 + x5 ⊗ x3

and

Γ̃
∗
(x9) = Γ̃(Sq1x8)

= Sq1(x3 ⊗ x5 + x5 ⊗ x3)

= x3 ⊗ x2
3 + x2

3 ⊗ x3.

By dualizing this, we have

Γ̃∗(y6 ⊗ y3) = y9(13)

where y9 ∈ H∗(G̃2;Z/2Z) is the dual element of x9 ∈ H∗(G̃2;Z/2Z)
with respect to the monomial basis.

Now we consider the case of ΩG̃2 . We have the fibration

ΩG̃2 → ΩG2 → K(Z, 2)

and the commutator map Γ′ : G2 ∧ ΩG2 → ΩG2 lifts to the map

Γ̃
′
: G2 ∧ ΩG2 → ΩG̃2 . Here we can set

Γ̃
′
(g, l)(t) = Γ̃(g, l(t))

for g ∈ G, l ∈ ΩG and t ∈ [0, 1]. Thus we have the following commu-
tative diagram in which the coefficient ring Z/2Z is abbreviated.
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H∗(G2)⊗ H∗+1(G2) H∗+1(G2)

H∗+1(G̃2)

H∗(G2)⊗ H∗(ΩG2 ) H∗(ΩG2 )

H∗(ΩG̃2 )

-
¡

¡
¡µ

?

Γ∗

Γ̃∗ i∗

-
¡

¡
¡µ

?

Γ′∗

Γ̃
′
∗

Ωi ∗
@

@
@

@
@I

@
@

@
@

@I
@

@
@

@
@I

Id⊗σ

σ

σ

Also, we know that

H∗(ΩG̃2 ;Z/2Z) =
∧

(b′7)⊗ Z/2Z[b′8, b10]

and Ωi ∗(b′8) = b2
4, Ωi ∗(b10) = b10 and σ(b′8) = y9. This can be seen by

the Serre spectral sequence of the fibration S1 → ΩG̃2 → ΩG .
Thus (13) implies that

y9 = Γ̃∗(y6 ⊗ σ(b2)) = σΓ̃
′
∗(y6 ⊗ b2).

Then Γ̃
′
∗(y6 ⊗ b2) 6= 0, that is, Γ̃

′
∗(y6 ⊗ b2) = b′8. Therefore

Γ′∗(y6 ⊗ b2) = Ωi ∗ ◦ Γ̃
′
∗(y6 ⊗ b2)

= Ωi ∗b′8 = b2
4.

Since the following diagram commutes,

Γ′∗(y6 ⊗ b2) = (y6 ∗ 1) · b2 + (y6 ∗ b2) · 1 = y6 ∗ b2.

G2 × ΩG2 × ΩG2

G2 × ΩG2

ΩG2 × ΩG2

ΩG2

-ad× 1

-Γ’

?1×∆ 6λ

Thus we finally obtain

y6 ∗ b2 = b2
4.

Q.E.D.(Lemma 4.2)

We remark that y6 ∗ bi can be determined upto primitive elements,
if all y6 ∗ b′ and y6 ∗ b′′ are determined where ∆∗bi =

∑
b′ ⊗ b′′. Since

∆∗y6 ∗ bi = (y6 ⊗ 1 + y3 ⊗ y3 + 1⊗ y6) ∗∆∗bi

=
∑

(y6 ∗ b′)⊗ b′′ + b′ ⊗ (y6 ∗ b′′).

For example, since ∆∗y6 ∗ b4 = (y6 ∗ b2)⊗ b2 + b2⊗ (y6 ∗ b2) = ∆∗(b2b
2
4),

y6 ∗ b4 = ρ(6,4)b10 + b2b
2
4

11



where ρ(6,4) ∈ Z/2Z. Then we have

y6 ∗ b4 = ρ(6,4)b10 + b2b
2
4,

y6 ∗ b8 = ρ(6,8)b14 + b4(y6 ∗ b4) + b2b
3
4,

y6 ∗ b16 = ρ(6,16)b22 + b8(y6 ∗ b8) + (b4b8 + b3
4)(y6 ∗ b4) + b2b

3
4b8 + b2b

5
4

(14)

where ρ(6,i) ∈ Z/2Z.
On the other hand, we have

Sq2
∗(y6 ∗ b4) = y6 ∗ (Sq2

∗b4) = y6 ∗ b2,
Sq4

∗(y6 ∗ b8) = y6 ∗ (Sq4
∗b8) = y6 ∗ b4,

Sq8
∗(y6 ∗ b16) = y6 ∗ (Sq8

∗b16) = y6 ∗ b8.
(15)

Since Steenrod operators map primitive elements into primitive el-
ements and decomposable elements into decomposable elements, by
(14), (15) and Lemma 4.2 we obtain that

ρ(6,4)Sq2
∗b10 = b2

4, ρ(6,8)Sq4
∗b14 = ρ(6,4)b10, ρ(6,16)Sq8

∗b22 = ρ(6,8)b14

and this implies that

ρ(6,4) = ρ(6,8) = ρ(6,16) = 1,

Sq2
∗b10 = b2

4, Sq4
∗b14 = b10, Sq8

∗b22 = b14.(16)

Therefore by (14) we have that

y6 ∗ b4 = b10 + b2b
2
4, y6 ∗ b8 = b14 + b10b4 + b3

4b2,
y6 ∗ b16 = b22 + b14b8 + b10b8b4 + b8b

3
4b2 + b10b

3
4 + b5

4b2.

Since b14 and b22 are primitive, we have the equations

y6 ∗ b14 = ρ(6,14)b
2
10,

y6 ∗ b22 = ρ(6,22)b
2
14

(17)

where ρ(6,i) ∈ Z/2Z. On the other hand by (16) we have

Sq4
∗(y6 ∗ b14) = y6 ∗ Sq4

∗b14 = y6 ∗ b10,
Sq8

∗(y6 ∗ b22) = y6 ∗ Sq8
∗b22 = y6 ∗ b14.

(18)

Since

0 = (y2
6) ∗ b4

= y6 ∗ (y6 ∗ b4)

= y6 ∗ b10 + y6 ∗ (b2b
2
4),

we obtain

y6 ∗ b10 = b4
4.

Therefore (17) and (18) implies that

ρ(6,14) = ρ(6,22) = 1.
12



Since there is no primitive elements in H6(ΩE6 ;Z/2Z) and H18(ΩE6 ;Z/2Z)
and since b10 and b22 are primitive, we have

Sq4
∗b10 = 0, Sq4

∗b22 = 0.

Thus we get the all formulas in Theorem 4.1.

Q.E.D.

By Theorem 4.1 we can deduce the following theorem about G2 and
F4.

Theorem 4.4. 1. In H∗(ΩG2 ;Z/2Z)

y6 ∗ b2 = b2
4,

y6 ∗ b4 = b10 + b2b
2
4,

y6 ∗ b10 = b4
4.

2. In H∗(ΩF4 ;Z/2Z)

y6 ∗ b2 = b2
4,

y6 ∗ b4 = b10 + b2b
2
4,

y6 ∗ b10 = b4
4,

y6 ∗ b14 = b2
10,

y6 ∗ b22 = b2
14.

Proof. By the naturality of the adjoint action we have the following
commutative diagram.

G2 × ΩG2
ad−→ ΩG2

↓ ↓
F4 × ΩF4

ad−→ ΩF4

↓ ↓
E6 × ΩE6

ad−→ ΩE6

Here H∗(ΩG2 ;Z/2Z) → H∗(ΩF4 ;Z/2Z) and H∗(ΩF4 ;Z/2Z) → H∗(ΩE6 ;Z/2Z)
are monic. Then Theorem 4.1 implies the statements.

5. Adjoint action on ΩE7

For the Hopf algebra structure of H∗(ΩE7 ;Z/2Z) we refer to the
following result of [5].

13



Theorem 5.1 (A.Kono & K.Kozima). In Theorem 2.3 we can choose
bi in H∗(ΩE7 ;Z/2Z) so as to satisfy that

∆∗(bi) = 0 for i 6= 4, 8, 16,(19)

∆∗(b4) = b2 ⊗ b2,(20)

∆∗(b8) = b2 ⊗ b2b4 + b4 ⊗ b4 + b2b4 ⊗ b2,(21)

∆∗(b16) = b2 ⊗ b2b4b8 + b4 ⊗ b4b8 + b2b4 ⊗ b2b8 + b8 ⊗ b8

+b2b8 ⊗ b2b4 + b4b8 ⊗ b4 + b2b4b8 ⊗ b2.(22)

Proof. For (19) see Theorem 5.1 in [5]. Then (20), (21) and (22)
follows from Theorem 4.1.

Now we observe the induced homomorphism on homology by the
adjoint action of E7 on ΩE7 .

Theorem 5.2. In Theorem 5.1 bi satisfies the following tables

bi y6 ∗ bi y10 ∗ bi y18 ∗ bi

b2 0 0 b2
10

b4 b10 b14 b22 + b2b
2
10

b8 b14 + b4b10 b18 + b4b14 b26 + b4b22 + b2b4b
2
10

b10 0 b2
10 b2

14

b14 b2
10 0 b2

16

b16 b22 + b8b14 + b4b8b10 b26 + b8b18 + b4b8b14 b34 + b8b26 + b4b8b22 + b2b4b8b
2
10

b18 0 b2
14 b2

18

b22 b2
14 b2

16 b4
10

b26 b2
16 b2

18 b2
22

b34 b4
10 b2

22 b2
26

bi Sq2
∗bi Sq4

∗bi Sq8
∗bi Sq16

∗ bi

b4 b2

b8 b2b4 b4

b10 b2
4 0

b14 0 b10

b16 b14 + b2b4b8 b4b8 b8

b18 0 0 b10

b22 b2
10 0 b14

b26 0 b22 b18

b34 b2
16 0 0 b18

14



Proof. By considering the inclusion E6 → E7, the result of Theorem
4.1 turns into

y6 ∗ b2 = 0, y6 ∗ b4 = b10, y6 ∗ b4 = b10, y6 ∗ b8 = b14 + b4b10, y6 ∗ b10 = 0,
y6 ∗ b16 = b22 + b8b14 + b4b8b10, y6 ∗ b14 = b2

10, y6 ∗ b22 = b2
14,

Sq2
∗b4 = b2, Sq2

∗b8 = b2b4, Sq4
∗b8 = b4, Sq4

∗b16 = b4b8,
Sq8

∗b16 = b8, Sq2
∗b10 = 0, Sq4

∗b10 = 0, Sq2
∗b14 = 0,

Sq4
∗b14 = b10, Sq4

∗b22 = 0, Sq8
∗b22 = b14.

If bi is primitive, y6∗bi, y10∗bi, y18∗bi and Sqj
∗bi are primitive . Thus

yi ∗ bj = 0 for (i, j) = (6, 18), (10, 2), (10, 14)

and

Sqj
∗ ∗ bi = 0 for (i, j) = (18, 2), (26, 2), (34, 4)

since there is no primitive elements of degrees which these elements
have in Hi(ΩE7 ;Z/2Z).

As stated in the proof of Theorem 4.1, y6 ∗ bi can be determined
modulo primitive elements, if all y6 ∗ b′ and y6 ∗ b′′ are known where
∆∗bi =

∑
b′⊗ b′′. This is true for the case of y10 ∗ bi and y18 ∗ bi. Thus

we can put as follows:

y10 ∗ b4 = ρ(10,4)b14,(23)

y10 ∗ b8 = ρ(10,8)b18 + b4(y10 ∗ b4),(24)

y10 ∗ b16 = ρ(10,16)b26 + (decomposable elements)(25)

where ρ(10,i) ∈ Z/2Z. By applying Sq4
∗ for (23), obtain

ρ(10,4)Sq4
∗b14 = Sq4

∗(y10 ∗ b4) = y6 ∗ b4 = y10

and this implies ρ(10,4) = 1. Also by applying Sq8
∗ for (24) and Sq4

∗ for
(25), we obtain the following equations in the similarway:

ρ(10,8)Sq8
∗b18 = Sq8

∗(y10 ∗ b8 + b4b14)

= y6 ∗ b4

= y10,(26)

ρ(10,16)Sq4
∗b26 = Sq4

∗(y10 ∗ b16)

= y6 ∗ b16 + y10 ∗ (b4b8)

= b22 mod decomposable elements.(27)

Then (26) and (27) implies ρ(10,8) = 1 and ρ(10,16) = 1 and Sq8
∗b18 =

b10. Also, since Sq4
∗b26 is primitive and no decomposable element in
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H22(ΩE7 ;Z/2Z) is primitive, (27) tells that Sq4
∗b26 = b22. Therefore

we obtain

y10 ∗ b4 = b14,(28)

y10 ∗ b8 = b18 + b4b14,(29)

y10 ∗ b16 = b26 + b8b18 + b4b8b14.(30)

By applying Sq2
∗ and Sq4

∗ to (29) and Sq8
∗ to (30), we have

y10 ∗ (b2b4) = Sq2
∗b18 + b2b14,

y6 ∗ b8 + y10 ∗ b4 = Sq4
∗b18 + b4b10,

y6 ∗ (b4b8) + y10 ∗ b8 = Sq8
∗b26 + b8b10.

So we obtain that

Sq2
∗b18 = 0, Sq4

∗b18 = 0, Sq8
∗b26 = b18.

Also, y10 ∗ b10 can be computed as

y10 ∗ b10 = y10 ∗ (y6 ∗ b4)

= y6 ∗ (y10 ∗ b4)

= y6 ∗ b14 = b2
10.

Next we observe y10 ∗ b18, y10 ∗ b22 and y10 ∗ b26. Since y10 ∗ b18 is
primitive, we can put

y10 ∗ b18 = ρ(10,18)b
2
14,(31)

y10 ∗ b22 = ρ(10,22)b
2
16,(32)

y10 ∗ b26 = ρ(10,26)b
2
18(33)

where ρ(10,i) ∈ Z/2Z. By applying Sq8
∗ for (31), Sq4

∗ for (32) and Sq16
∗

for (33), we obtain that

ρ(10,18)Sq8
∗b

2
14 = Sq8

∗y10 ∗ b18 = y10 ∗ b10 = b2
10,

ρ(10,22)Sq4
∗b

2
16 = Sq4

∗y10 ∗ b22 = y6 ∗ b22 = b2
14,

ρ(10,26)Sq16
∗ b2

18 = Sq16
∗ y10 ∗ b26 = y6 ∗ b14 = b2

10.

Therefore we have ρ(10,18) = ρ(10,22) = ρ(10,26) = 1 and

Sq4
∗(b

2
16) = b2

14.(34)

Remember that by (11) in the proof of Theorem 4.1 we have

Sq2
∗b16 = kb14 + b2b4b8 + b2b

3
4 in H∗(ΩE6 ;Z/2Z)
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where k ∈ Z/2Z and then

Sq2
∗b16 = kb14 + b2b4b8 in H∗(ΩE7 ;Z/2Z).

Then one can easily show k = 1 from (34). Hence

Sq2
∗b16 = b14 + b2b4b8 + b2b

3
4 in H∗(ΩE6 ;Z/2Z),

Sq2
∗b16 = b14 + b2b4b8 in H∗(ΩE7 ;Z/2Z).

Moreover we have that in H∗(ΩE6 ;Z/2Z)

Sq2
∗(y6 ∗ b16) = y6 ∗ (b14 + b2b4b8 + b2b

3
4)

= b2
10 + b2b4b14 + b2b8b10 + b3

4b8 + b5
4,

while

Sq2
∗(y6 ∗ b16) = Sq2

∗(b22 + b8b14 + b4b8b10 + b3
4b10 + b2b

5
4)

= Sq2
∗b22 + b2b4b14 + b2b8b10 + b3

4b8 + b5
4.

Therefore it follows that

Sq2
∗b22 = b2

10 in H∗(ΩE6 ;Z/2Z) and H∗(ΩE7 ;Z/2Z).

Next we consider y18 ∗ b2, y18 ∗ b4 and y18 ∗ b8. We can put

y18 ∗ b2 = ρ(18,2)b
2
10,(35)

y18 ∗ b4 = ρ(18,4)b22 + (decomposable elements),(36)

y18 ∗ b8 = ρ(18,8)b26 + (decomposable elements),(37)

y18 ∗ b16 = ρ(18,16)b34 + (decomposable elements).(38)

By applying Sq8
∗ to (37), we have

ρ(18,8)Sq8
∗b26 ≡ Sq8

∗(y18 ∗ b8)

≡ y10 ∗ b8

≡ b18 mod decomposable elements.

Thus ρ(18,8) = 1 and also we see

y18 ∗ b4 = Sq4
∗(y18 ∗ b8)

≡ Sq4
∗b26

≡ b22 mod decomposable elements.

This means ρ(18,4) = 1. Moreover we know that

∆∗(y18 ∗ b4) = b2 ⊗ (y18 ∗ b2) + (y18 ∗ b2)⊗ b2,

that is, y18 ∗ b4 = b22 + b2(y18 ∗ b2). Therefore

y18 ∗ b2 = Sq2
∗(y18 ∗ b4)

= Sq2
∗(b22 + ρ(18,2)b2b

2
10)

= b2
10
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and ρ(18,2) = 1. Also operating Sq16
∗ to (38), we see

y10 ∗ b8 = Sq16
∗ (y18 ∗ b16)

= ρ(18,16)Sq16
∗ b34 + (decomposable elements).

Then, by (29), we deduce ρ(18,16) = 1 and Sq16
∗ b34 = b18.

Now we can compute y18 ∗ b2, y18 ∗ b4, y18 ∗ b8 and y18 ∗ b16, using

y18 ∗ b4 = ρ(18,4)b22 + b2(y18 ∗ b2)

and by the similar manner. Hence we have

y18 ∗ b2 = b2
10,(39)

y18 ∗ b4 = b22 + b2b
2
10,(40)

y18 ∗ b8 = b26 + b4b22 + b2b4b
2
10,(41)

y18 ∗ b16 = b34 + b8b26 + b4b8b22 + b2b4b8b
2
10.(42)

Next we observe y18 ∗ b10, y18 ∗ b14, y18 ∗ b18 and y18 ∗ b26. We can put

y18 ∗ b10 = ρ(18,10)b
2
14,(43)

y18 ∗ b14 = ρ(18,14)b
2
16,(44)

y18 ∗ b18 = ρ(18,18)b
2
18,(45)

y18 ∗ b26 = ρ(18,26)b
2
22,(46)

by primitivity. We can easily show ρ(18,10) = ρ(18,14) = ρ(18,18) =

ρ(18,26) = 1 by applying Sq8
∗ to (43), Sq4

∗ to (44), Sq16
∗ to (45) and

Sq16
∗ to (46). Also by applying Sq4

∗ to (46), we have

y18 ∗ b22 = Sq4
∗(y18 ∗ b26) = Sq4

∗b
2
22 = b4

10.

Now the rest we have to do is to determine y6 ∗ b34, y10 ∗ b34, y18 ∗ b34

and to determine Sq2
∗b34 and Sq8

∗b34. Here (42) implies that

y6 ∗ b34 = y6 ∗ (y18 ∗ b16 + b8b26 + b4b8b22 + b2b4b8b
2
10)

= y18 ∗ (y6 ∗ b16) + y6 ∗ (b8b26 + b4b8b22 + b2b4b8b
2
10)

= b4
10.

By the similar manner we can compute y10 ∗ b34 and y18 ∗ b34 as

y10 ∗ b34 = b2
22,

y18 ∗ b34 = b2
26.(47)

Also by applying Sq8
∗ to (47), we have

y18 ∗ (Sq8
∗b34) + y10 ∗ b34 = Sq8

∗(b
2
26).

This means y18 ∗ (Sq8
∗b34) = 0, while Sq8

∗b34 = b26 or 0. Therefore
Sq8

∗b34 = 0.
18



Also by applying Sq2
∗ to (42), we have

Sq2
∗b34 = y18 ∗ (Sq2

∗b16) + Sq2
∗(b8b26 + b4b8b22 + b2b4b8b

2
10)

= b2
16.

Thus we obtain the all entries of the tables in Theorem 5.2.

Q.E.D.

6. Homology ring of LG (G)

As stated in §1, LG (G) is isomorphic to the semi-direct product of
G and ΩG . Thus the following diagram commutes (See [6]. )

LG (G) × LG (G)

ΩG ×G× ΩG ×G ΩG × ΩG ×G×G ΩG ×G

LG (G)

- -

-
? ?

ω λ× µ

Φ× Φ Φ
λ′

where Φ : ΩG ×G → LG (G) is a map defined by Φ(l, g)(t) = l(t)·g
and λ,λ′ and µ are the multiplication maps of ΩG , LG (G) and G
respectively and ω is the composition

(1ΩG × T × 1G) ◦ (1ΩG × ad× 1G) ◦ (1ΩG ×∆∗G × 1ΩG ×G).

And also, Φ is homeomorphism.
Therefore we have the following theorem.

Theorem 6.1. Let G be a compact, connected, simply connected Lie
group and p a prime. Then

H∗(LG (G) ;Z/pZ) ∼= H∗(ΩG ;Z/pZ)⊗ H∗(G;Z/pZ) as Z/pZ module

and the multiplication is defined by

(b⊗ y) · (b′ ⊗ y′) = (b · (y(2) ∗ b′))⊗ (y(1) · y′)
where b, b′ ∈ H∗(ΩG ;Z/pZ), y, y′ ∈ H∗(G;Z/pZ) and ∆∗y =

∑
y(1) ⊗

y(2).

Thus by Theorem 4.1, 4.4 and 5.2 we can directly compute the al-
gebra structure of H∗(LG (G) ;Z/2Z) for G = G2, F4, E6, E7. But it is
complex to write them out exactly. Hence we show the case of G2 only.

Theorem 6.2. H∗(LG (G2) ;Z/2Z) is generated by y3, y5, y6 and b2, b4, b10.
And their fundamental relations are

y2
3 = 0, y2

5 = 0, y2
6 = 0, b2

2 = 0,

[yi, yj] = 0, [bi, bj] = 0 [y3, bi] = 0, [y5, bi] = 0,

[y6, b2] = b2
4, [y6, b4] = b10, [y6, b10] = b4

4.

Hiroaki HAMANAKA
Department of Mathematics, Kyoto University
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