A memo about the definition of projective n-spaces of a Hopf space.

Hiroaki Hamanaka

In [1], the projective i-space $X P(i)$ of an associative H -space X is defined as follows.
Definition 0.0.1. Let X be an associative H-space. Then $X P(n)$ is defined inductively as follows.

Let Δ^{n} be the standard n-simplex and $\delta_{i}: \Delta^{n-1} \rightarrow \Delta^{n}(0 \leq i \leq n)$ and $s_{i}: \Delta^{n} \rightarrow \Delta^{n-1}$ $(1 \leq i \leq n)$ be the face and the degeneracy map, respectively.

The following map is claimed to be a relative homeomorphism.

$$
\zeta_{n}:\left(\Delta^{n} \times X^{n}, \delta \Delta^{n} \times X^{n} \cup \Delta^{n} \times X^{[n]}\right) \rightarrow(X P(n), X P(n-1))
$$

where ζ_{n} is defined by

$$
\zeta_{n}\left(\delta_{i}(\sigma), x_{1}, \ldots, x_{n}\right)= \begin{cases}\zeta_{n-1}\left(\sigma, x_{2}, \ldots, x_{n}\right) & i=0 \\ \zeta_{n-1}\left(\sigma, x_{1}, \ldots, x_{n-1}\right) & i=n \\ \zeta_{n-1}\left(\sigma, x_{1}, ., x_{i} \cdot x_{i+1}, . ., x_{n}\right) & 0<i<n\end{cases}
$$

and

$$
\zeta_{n}\left(\sigma, x_{1}, \ldots, x_{n}\right)=\zeta_{n-1}\left(s_{j}(\sigma), x_{1}, \ldots, \hat{x_{j}}, \ldots, x_{n}\right)
$$

when $x_{j}=*$.
Here $X^{[n]}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid\right.$ for some $\left.j x_{j}=*\right\}$.
This definition may be somewhat difficult for beginners. First you should observe that the initial condition of the inductive definition, that is, $X P(0)=*$, since the domain of ζ_{0} is just $(*, \emptyset)$.

Next you will consider $X P(1)$. What is $X P(1)$? The above definition says that

$$
\zeta_{1}:([0,1] \times X,\{0,1\} \times X \cup[0,1] \times *) \rightarrow(X P(1), *)
$$

is a relative homeomorphism. Yes, $X P(1)$ is just the suspension space of X. But we consider as following. $X P(1)$ is a quotient space of $\left\{\left(t_{0}, x, t_{1}\right) \in[0,1] \times X \times[0,1] \mid t_{0}+t_{1}=1\right\}$ with the equivalence relation:

$$
(0, x, 1) \sim\left(t_{0}, *, t_{1}\right) \sim(1, x, 0)
$$

The similar consideration goes for $n \geq 2$. Now we can give the substitutive definition of $X P(n)$ which may be more comprehensible:

Definition 0.0.2. Let X be an associative H-space. We call

$$
\left\{\left(t_{0}, x_{1}, t_{1}, x_{2}, t_{2}, \ldots, x_{n}, t_{n}\right) \mid t_{i} \in[0,1], x_{i} \in X, \sum t_{i}=1\right\}
$$

as weighted product $X^{w(n)}$ of X. Then $X P(n)$ is the quotient space of $\bigcup_{0 \leq i \leq n} X^{w(n)}$ and the equivalence relation

$$
\begin{aligned}
\left(0, x_{1}, t_{1}, x_{2}, t_{2}, \ldots, x_{n}, t_{n}\right) & \sim\left(t_{1}, x_{2}, t_{2}, \ldots, x_{n}, t_{n}\right) \\
\left(t_{0}, x_{1}, t_{1}, x_{2}, t_{2}, \ldots t_{n-1}, x_{n}, 0\right) & \sim\left(t_{0}, x_{1}, t_{1}, \ldots, t_{n-1}\right) \\
\left(t_{0}, x_{1}, t_{1}, \ldots x_{i}, 0, x_{i+1}, \ldots, x_{n}, t_{n}\right) & \sim\left(t_{0}, x_{1}, t_{1}, \ldots, x_{i} \cdot x_{i+1}, \ldots, x_{n}, t_{n}\right) \\
\left(t_{0}, x_{1}, t_{1}, \ldots t_{i-1}, *, t_{i}, \ldots, x_{n}, t_{n}\right) & \sim\left(t_{0}, x_{1}, t_{1}, \ldots, t_{i-1}+t_{i}, \ldots, x_{n}, t_{n}\right)
\end{aligned}
$$

[1] Yutaka Hemmi, Higher homotopy commutativity of H-spaces and the $\bmod p$ torus theorem Pacific J. Math. vol.149, No.1,(1991), 95-111.

